Academy MOC Essentials®
Practicing Ophthalmologists Curriculum
2017–2019

Neuro-Ophthalmology and Orbit

As a service to its members and American Board of Ophthalmology (ABO) diplomates, the American Academy of Ophthalmology has developed the Practicing Ophthalmologists Curriculum (POC) as a tool for members to prepare for the Maintenance of Certification (MOC) -related examinations. The Academy provides this material for educational purposes only.

The POC should not be deemed inclusive of all proper methods of care or exclusive of other methods of care reasonably directed at obtaining the best results. The physician must make the ultimate judgment about the propriety of the care of a particular patient in light of all the circumstances presented by that patient. The Academy specifically disclaims any and all liability for injury or other damages of any kind, from negligence or otherwise, for any and all claims that may arise out of the use of any information contained herein.

References to certain drugs, instruments, and other products in the POC are made for illustrative purposes only and are not intended to constitute an endorsement of such. Such material may include information on applications that are not considered community standard, that reflect indications not included in approved FDA labeling, or that are approved for use only in restricted research settings. The FDA has stated that it is the responsibility of the physician to determine the FDA status of each drug or device he or she wishes to use, and to use them with appropriate patient consent in compliance with applicable law.

The Practicing Ophthalmologists Curriculum is intended to be the basis for MOC examinations in 2017, 2018 and 2019. However, the Academy specifically disclaims any and all liability for any damages of any kind, for any and all claims that may arise out of the use of any information contained herein for the purposes of preparing for the examinations for MOC.

THE AMERICAN ACADEMY OF OPHTHALMOLOGY DOES NOT WARRANT OR GUARANTEE THAT USE OF THESE MATERIALS WILL LEAD TO ANY PARTICULAR RESULT FOR INDIVIDUALS TAKING THE MOC EXAMINATIONS. THE AMERICAN ACADEMY OF OPHTHALMOLOGY DISCLAIMS ALL DAMAGES, DIRECT, INDIRECT OR CONSEQUENTIAL RELATED TO THE POC.

Any questions or concerns related to the relevance and validity of questions on the MOC examinations should be directed to the American Board of Ophthalmology.
The Practicing Ophthalmologists Curriculum was developed by a group of dedicated ophthalmologists reflecting a diversity of background, training, practice type and geographic distribution.

Jeffrey D. Henderer, M.D., American Academy of Ophthalmology Secretary for Curriculum Development, serves as the overall project director for the acquisition and review of the topic outlines.

The Academy gratefully acknowledges the contributions of the American Association for Pediatric Ophthalmology and Strabismus.

Practicing Ophthalmologists Curriculum Panel
Matthew Dean Kay, M.D., Chair
Todd A. Goodglick, M.D., Vice Chair
Swaraj Bose, M.D.
Sang H. Hong, M.D.
Guy V. Jirawuthiworavong, M.D.
Flora Levin, M.D.
Golnaz Moazami, M.D.

Financial Disclosures
The Academy's Board of Trustees has determined that a financial relationship should not restrict expert scientific clinical or non-clinical presentation or publication, provided appropriate disclosure of such relationship is made. All contributors to Academy educational activities must disclose significant financial relationships (defined below) to the Academy annually.

Contributors who have disclosed financial relationships:
Golnaz Moazami, M.D.
Abbvie: C
Contributors who state they have no significant financial relationships to disclose:
Swaraj Bose, M.D.
Todd A. Goodglick, M.D.
Jeffrey D. Henderer, M.D.
Sang H. Hong, M.D.
Guy V. Jirawuthiworavong, M.D.
Matthew Dean Kay, M.D.
Flora Levin, M.D.

Key:

<table>
<thead>
<tr>
<th>Category</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consultant / Advisor</td>
<td>C</td>
<td>Consultant fee, paid advisory boards or fees for attending a meeting (for the past 1 year)</td>
</tr>
<tr>
<td>Employee</td>
<td>E</td>
<td>Employed by a commercial entity</td>
</tr>
<tr>
<td>Lecture Fees</td>
<td>L</td>
<td>Lecture fees (honoraria), travel fees or reimbursements when speaking at the invitation of a commercial entity (for the past 1 year)</td>
</tr>
<tr>
<td>Equity Owner</td>
<td>O</td>
<td>Equity ownership/stock options of publicly or privately traded firms (excluding mutual funds) with manufacturers of commercial ophthalmic products or commercial ophthalmic services</td>
</tr>
<tr>
<td>Patents / Royalty</td>
<td>P</td>
<td>Patents and/or royalties that might be viewed as creating a potential conflict of interest</td>
</tr>
<tr>
<td>Grant Support</td>
<td>S</td>
<td>Grant support for the past 1 year (all sources) and all sources used for this project if this form is an update for a specific talk or manuscript with no time limitation</td>
</tr>
</tbody>
</table>

Background on Maintenance of Certification (MOC)

Developed according to standards established by the American Board of Medical Specialties (ABMS), the umbrella organization of 24 medical specialty boards, Maintenance of Certification (MOC) is designed as a series of requirements for practicing ophthalmologists to complete over a 10-year period. MOC is currently open to all Board Certified ophthalmologists on a voluntary basis; time-limited certificate holders (ophthalmologists who were Board Certified after July 1, 1992) are required to participate in this process. All medical specialties participate in a similar process.

The roles of the American Board of Ophthalmology (ABO) and the American Academy of Ophthalmology relative to MOC follow their respective missions.

- The mission of the American Board of Ophthalmology is to serve the public by improving the quality of ophthalmic practice through a process of certification and maintenance of certification that fosters excellence and encourages continual learning.

- The mission of the American Academy of Ophthalmology is to protect sight and empower lives by serving as an advocate for patients and the public, leading ophthalmic education, and advancing the profession of ophthalmology.
The role of the ABO in the MOC process is to evaluate and to certify. The role of the Academy in this process is to provide resources and to educate.

Organization of the POC

The Practicing Ophthalmologists Curriculum comprises 10 practice emphasis areas (PEA), plus Core Ophthalmic Knowledge.

- Core Ophthalmic Knowledge (a required segment for the ABO's MOC examinations)
- Comprehensive Ophthalmology
- Cataract/Anterior Segment
- Cornea/External Disease
- Glaucoma
- Neuro-Ophthalmology and Orbit
- Oculoplastics and Orbit
- Pediatric Ophthalmology/Strabismus
- Refractive Management/Intervention
- Retina/Vitreous
- Uveitis

In addition to two practice emphasis areas of choice, every diplomate sitting for the DOCK examination will be tested on Core Ophthalmic Knowledge. The ABO defines Core Ophthalmic Knowledge as fundamental knowledge every practicing ophthalmologist should have regardless their practice focus.

Each PEA is categorized into topics presented in an outline format for easier reading and understanding. These outlines are based on a standard clinical diagnosis and treatment approach found in the Academy's Preferred Practice Patterns. For each topic, there are Additional Resources that may contain journal citations and reference to textbooks that may be helpful in preparing for MOC examinations.

Creation of the POC

The POC was developed by panels of Academy members who are practicing ophthalmologists in each of the ten practice emphasis areas. The panels reflect a diversity of background, training, practice type and geographic distribution. Additionally, all panel members are time-limited certificate holders actively participating in the MOC process.

The panels have reviewed the ABO’s content outlines for the MOC examinations and developed and clinical review topics that they feel are most likely to appear on MOC examinations. These clinical topics also were reviewed by representatives from each subspecialty society.

Revision Process

The POC is revised every three years. The POC panels will consider new evidence in the peer-reviewed literature, as well as input from the subspecialty societies, and the Academy's Self-Assessment Committee, in revising and updating the POC.
Prior to a scheduled review the POC may be changed under the following circumstances:

- A Level I (highest level of scientific evidence) randomized controlled trial indicates a major new therapeutic strategy
- The FDA issues a drug/device warning
- Industry issues a warning
Neuro-Ophthalmology/Orbit

Diagnostic Tests

1. Confrontation visual field testing ... 11
2. Automated static perimetry ... 13
3. Computed tomography .. 16
4. Magnetic resonance imaging ... 18

High Intracranial Pressure/Headache

5. Migraine ... 21
6. Papilledema ... 24
7. Pseudotumor cerebri (PTC) and Idiopathic Intracranial Hypertension (IIH)..... 27

Infection

8. Orbital cellulitis ... 31
9. Aspergillosis ... 35
10. Mucor .. 38

Optic Neuropathy

11. Non arteritic anterior ischemic optic neuropathy ... 41
12. Arteritic anterior ischemic optic neuropathy (AION) 44
13. Optic disc drusen .. 47
14. Optic atrophy .. 50
15. Multiple sclerosis ... 52
16. Demyelinating optic neuritis ... 55
17. Hereditary Optic Neuropathy .. 59
18. Chiasmal syndromes ... 62
19. Disorders of the retrogenticulate pathway .. 66
20. Disorders of the lateral geniculate and optic tract ... 71
Motility

21. Internuclear ophthalmoplegia ... 73
22. Restrictive strabismus and diplopia ... 75
23. Nuclear lesions of the oculomotor nerves .. 78
24. Isolated oculomotor nerve lesion ... 80
25. Aberrant regeneration of the third cranial nerve 82
26. Abducens nuclear lesion ... 84
27. Abducens nerve palsy .. 86
28. Trochlear nerve palsy ... 89
29. Myasthenia gravis .. 92
30. Dorsal midbrain syndrome (pretectal or Parinaud syndrome) 97

Nystagmus

31. Nystagmus .. 100

Eyelid and adnexal disease

32. Benign essential blepharospasm .. 105
33. Facial nerve paresis .. 108
34. Hemifacial spasm ... 111

Orbit

35. Idiopathic orbital inflammatory disease (AKA: orbital pseudotumor) 114
36. Thyroid eye disease (thyroid (associated) orbitopathy) 118
37. Optic nerve sheath meningioma .. 122
38. Orbital tumor causing neuro-ophthalmic manifestations 125
39. Orbital hemorrhage ... 131
40. Orbital fractures ... 134
Pupils

41. Approach to anisocoria ... 138
42. Pharmacologic mydriasis ... 144
43. Horner syndrome .. 145
44. Adie pupil ... 148
45. Relative afferent pupillary defect .. 150

Vascular

46. Thromboembolic phenomena .. 152
47. Cerebrovascular disease/stroke .. 154
48. Cerebral aneurysms .. 157
49. Dissecting aneurysms ... 159
50. Cerebral venous sinus thrombosis ... 161
51. Dural cavernous fistula and traumatic carotid cavernous fistula .. 163
52. Ocular ischemic syndrome ... 165

Miscellaneous

53. Cavernous sinus syndrome .. 168
54. Multiple cranial nerve palsies .. 172
55. Eyelid retraction .. 176
56. Ptosis .. 179
57. Miller Fisher variant of Guillain-Barré syndrome 183
58. Systemic corticosteroids in neuro-ophthalmology 186
59. Non-physiologic visual loss (NPVL) ... 189
Confrontation visual field testing

I. List indications/limitations
 A. Functions as a screening test
 B. Depends on ability of patient to understand instructions and cooperate
 C. Field testing needs to be tailored to patient's age and attention span
 D. Can miss visual field defects detectable with quantitative perimetry

II. Describe pre-procedure evaluation
 A. Evaluate patient's ability to understand and follow directions
 B. Evaluate level of visual acuity

III. List the alternatives to this procedure
 A. Amsler grid testing
 B. Tangent screen perimetry
 C. Goldmann kinetic perimetry
 D. Automated static perimetry

IV. Describe the instrumentation and technique
 A. Can be performed at the bedside or exam room
 B. Examiner seated about 1-meter opposite patient
 C. Patient is directed to cover one eye and fixate on examiner's opposite eye that is directly in front
 D. Patient is asked whether examiner's entire face is visible or specific portions are missing
 E. Patient is asked to identify a target of one, two or five fingers presented at the midpoint of each of the four quadrants
 F. The target should be presented in a plane halfway between the patient and examiner
 G. Patient is asked to add the total number of fingers presented in opposing quadrants (double simultaneous stimulation)
 1. In addition to visual loss, failure of this test may represent extinction phenomenon as the optic radiations pass through the parietal lobe, or it could reflect patient's inability to add (dyscalculia)
 H. Subjective comparisons between temporal and nasal and superior and inferior hemifields using clarity of examiner's hands or color comparisons of red objects
 1. This requires patient judgment; therefore, interpretation is not clear-cut in patients with visual inattention or neglect
 I. Moving stimuli are almost always appreciated better than static ones, so the latter are preferable for screening for subtle field defects
 J. Expressive aphasic, uncooperative, sedated, intubated or very young patients can use finger mimicry, pointing, visual tracking or reflex blink to respond and allow gross appraisal of visual field integrity
 1. If a patient saccades to a visual stimulus in a given quadrant, the visual field in that area can be considered to be relatively intact
 K. Check patient's ability to distinguish color of red object when looking directly at it
 1. Check color of object to right and left of fixation (looking for central scotoma vs hemianopic defect too subtle
V. Describe the considerations in interpretation of this diagnostic procedure

A. Subtle or small visual field defects can be missed, particularly if red desaturation is not tested
B. Limitations in patient comprehension and cooperation may limit usefulness of field testing
C. Inadequate cover of eye with hand or occluder (rather than patching) may allow patient to see or inadvertently peek with the covered eye and lead to inaccurate results
D. The visual field of the examiner is being compared to the patient
 1. It is assumed the examiner's visual field is normal
E. Finger wiggling visual field may lead to larger field than finger counting field

Additional Resources

1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.
Automated static perimetry

I. List the advantages/disadvantages
 A. Advantages
 1. Reproducible
 2. More objective (but still a subjective test)
 3. More standardized testing procedures, which improve serial and inter-institutional comparison of results
 4. Less technician dependent and less inter-technician variability
 5. More sensitive to subtle field loss than Goldmann perimetry
 6. Numerical data can be used for statistical analysis and stored electronically
 7. More sensitive to diffuse depression (usually anterior segment [cataract or surface problem] or refractive)
 8. Examples of visual field defects
 B. Disadvantages
 1. Can be lengthy
 2. Tedious
 3. False positives, false negatives, and fixation losses may alter interpretation
 4. Detection of scotomas may be impaired
 5. May require several tests to establish reliability
 6. Limited to central 30 degrees while Goldmann kinetic perimetry extends more peripherally
 7. Threshold test (by definition) more difficult
 a. Stimuli not seen 50% of the time

II. Describe pre-procedure evaluation
 A. Measure refractive error and determine near correction if appropriate
 B. Assess ability of patient to perform static perimetry (mental status, comfort with sitting still for extended
 period of time, good attention span, good understanding of test)

III. List the alternatives to this procedure
 A. Other means of perimetry include
 1. Confrontation visual field
 2. Kinetic perimetry
 B. Various static perimetry stimuli and algorithms exist
 3. Screening field rather than threshold in some cases
 C. Kinetic perimetry can be more appropriate than static automated perimetry for
 4. Young children
 5. Patients who need frequent verbal redirection of attention

IV. Describe the instrumentation and technique
 A. Various automated perimetry devices are available, which typically test 10 to 30 degrees radius from fixation
in each eye

B. Corrective lenses are supplied for testing according to the patient's refraction or current glasses

C. The patient fixates on a central target and presses buzzer when light is seen

D. The stimulus size is kept the same, but the stimulus intensity is varied

E. The computer records and estimates threshold (stimulus seen 50% of the time at each test location)

F. This threshold estimate is recorded in decibels, a unit on logarithmic scale of brightness, zero decibels being the inability to see the maximum stimulus of the perimeter

G. These threshold values are compared with age-matched normal values at each point, along with a statistical evaluation of the probability that each point value is abnormal and plotted on topographic grids

H. Patient reliability is recorded by means of fixation losses, false-positive and false-negative responses

V. Describe the considerations in interpretation of this diagnostic procedure

A. When the patient responds to a stimulus presented in the assumed blind spot location, a fixation loss is recorded
 1. The number of fixation losses estimates how reliably the patient's gaze is maintained on fixation target. With defects around the blind spot or significant field loss fixation loss may be underestimated
 2. This may indicate that the eye is not aligned with the fixation target (improper patient positioning)

B. A false-positive response occurs when the patient depresses the button when no light stimulus was presented
 1. These errors can be reduced by technician-patient interaction during testing
 2. Can indicate an overanxious patient

C. A false negative response is when a patient fails to depress the button when a stimulus of greater intensity is represented in the same location where threshold was already determined. These errors can indicate patient fatigue or inattention
 1. They increase with increasing visual field pathology.

D. There may be a learning curve
 1. The first static automated visual field is frequently less reliable than subsequent fields

E. The mean deviation is a center-weighted summation of the differences from age corrected normal at all tested points
 1. It is a measure of the overall height of the hill of vision relative to normal
 2. As the patient's visual field worsens, the mean deviation becomes more negative
 3. Serial visual fields can be compared by following the mean deviation.

F. Pattern deviation
 1. Uses methodology to reduce or filter out the effect of generalized depression i.e. possibly due to refractive error/cataract allowing identification of focal defects in the visual field

G. Global indices (mean deviation, pattern deviation) are calculated to help determine changes in sensitivity over time

H. Mild ptosis or dermatochalasis can be associated with depression of the superior visual field
 1. Improper head positioning can also cause the nose to produce an inferonasal defect or a trial lens-induced scotoma to appear.

I. Increasing age, media opacities and pupillary miosis may cause diffusely decreased sensitivity

VI. Clinically relevant anatomic correlations

A. Optic nerve disease causes monocular visual field defects
 1. Paracentral scotoma
2. Central scotoma
3. Centrocecal scotoma
4. Arcuate defects
5. Nasal step defects
6. Altitudinal defects

B. Optic chiasmal disease causes bitemporal visual field defects

C. Retrochiasmal disease causes homonymous visual field defects

Additional Resources

1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.
Computed tomography

I. List indications/contraindications

A. Indications
 1. Globe and orbital trauma
 2. Assessment of bony abnormalities including fractures
 3. Detection of calcification in lesions
 4. Assessment of acute intracranial hemorrhage
 5. When magnetic resonance imaging (MRI) is contraindicated
 a. Ferromagnetic foreign body
 b. Pacemaker
 c. Recent cardiac stent; recently placed metallic implants
 d. MRI - incompatible intracranial aneurysm clips
 e. Cochlear implants
 f. Claustrophobia, obesity (relative contraindications)

 6. Neuro radiologic consultation may provide guidance for the application of CTA or MRA for specific clinical scenarios

B. Contraindications
 1. Allergy to contrast media, if contrast is needed
 2. Relative contraindication in pregnancy
 a. Can shield fetus with lead apron
 3. Repeated studies in childhood or when risk of radiation induced secondary tumors is increased
 4. Renal insufficiency if using contrast

C. Disadvantages
 1. Soft tissue details can be lost when in close proximity to bony structures such as the orbital apex, optic canal, and at the skull base
 2. Lack of direct sagittal imaging
 3. Dental fillings, braces may cause artifacts
 4. Poor visualization of posterior fossa
 5. Radiation risks to eye, orbit, head and neck

II. Describe pre-procedure evaluation

A. Need to assess for potential allergic reaction to contrast dye (iodine, shellfish)
B. Contraindications to ionizing radiation (need for frequent imaging, potential pregnancy)
C. Renal function should be assessed before giving contrast dye
D. Determine whether direct coronal images are required rather than reconstructed images for superior quality images (e.g., orbital fractures, extraocular muscle entrapment or vertical recti enlargement or abnormalities)
E. Providing clinical information to radiologist invaluable in planning studies and interpreting test results
F. Discuss optimal sequences/technique for differential diagnosis with radiologist to insure proper technique and lesion interpretation
III. List the alternatives to this procedure
 A. MRI
 B. Ultrasound

IV. Describe the instrumentation and technique
 A. CT scanning is based on ionizing radiation that digitally processes images from a series of 2 dimensional x-ray (sectional) images

V. List the complications of the procedure, their prevention and management
 A. Allergic reaction to iodinated contrast
 B. Contrast agent-induced renal failure
 1. Risk is high in dehydrated patients and patients with renal or cardiovascular insufficiency
 C. Neurotoxicity from contrast dye in conjunction with arteriography has been reported

VI. Describe the considerations in interpretation of this diagnostic procedure
 A. Lack of contrast administration may lead to false normal radiologic interpretation
 B. Radiolucent foreign bodies may not be well seen
 C. Poor resolution at orbital apex or posterior fossa
 D. Artifact from metallic foreign bodies, beam hardening, and motion

Additional Resources
1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.
Magnetic resonance imaging

I. List indications/contraindications

A. Definition
 1. Magnetic resonance imaging (MRI) is a method to generate cross-sectional images from the interior of the body based on nuclear magnetic resonance using powerful magnetic field and radiofrequency pulses without using ionizing radiation

B. Indications
 1. Most useful to image soft tissues with full extent of inflammatory, ischemic and neoplastic processes
 2. Can obtain images of areas more difficult to image with other modalities such as the skull base, orbital apex
 3. Establish evolution of intraparenchymal hemorrhage
 4. Confirmed nonmetallic foreign bodies

C. Contraindications
 1. Trauma causing injury that could be exacerbated by manipulation of patient in scanner
 2. Unstable medical condition logistically prevents patient from being scanned
 3. Metallic foreign body
 4. Cardiac pacemaker/defibrillator
 5. Cochlear implants
 6. MRI-incompatible aneurysm clips
 7. Recent cardiac stent placement
 8. Neurostimulators
 9. Claustrophobia (relative contraindication)
 10. Large body size (relative contraindication)
 11. Pregnancy (relative contraindication)
 12. No contrast with significant renal insufficiency

D. Technique may not be sensitive for acute hemorrhage

E. Expensive

II. Describe pre-procedure evaluation

A. Rule out contraindications
B. Specify anatomically where imaging needs to be performed: brain, orbits, neck, chest
C. Evaluate need for magnetic resonance angiography (MRA), magnetic resonance venography (MRV)
D. Discuss optimal sequences/technique for differential diagnosis with radiologist to ensure proper technique and lesion interpretation

III. List the alternatives to this procedure

A. Other imaging techniques: CT, ultrasound
B. In suspected large vessel disease, CT angiography or digital angiography are alternatives to MRA

IV. Describe the instrumentation and technique
A. Mobile protons in biologic tissues align themselves and resonate along the direction of a strong static magnetic field at a known frequency. Resonating protons are exposed to a burst of radiofrequency energy that briefly excites them to a higher energy state.

B. After excitation, protons spontaneously undergo a tissue characteristic process of relaxation and release weak radiofrequency energy, which is detected by a large antenna coil inside the MRI unit. The radiofrequency map is converted into a spatial signal map that appears as an image. Different tissues and disease processes may exhibit different tissue-specific relaxation properties that often allow one tissue to be distinguished from another.

C. MRI is sensitive to soft tissue changes in water content
 1. Pathologic processes in general have an increase in water content compared to normal tissues

D. Gadolinium injection
 1. Paramagnetic substance
 2. Can cross disrupted blood-brain barrier as can occur in CNS disease
 3. Can help distinguish normal from abnormal tissue, whether inflammatory or neoplastic
 4. Not necessary for MRA of brain or of neck (but considered advantageous for a optimal quality MRA scan specifically of the neck)

E. T1 weighted images
 1. Most useful for demonstrating anatomy
 a. Fat is brightest and increasing water content in structures seen as darker image

F. T2 weighted images
 1. Maximize differences in water content and most sensitive to inflammatory, ischemic or neoplastic alterations in tissue
 a. Water containing structures brightest, fat containing structures less bright

G. Fat-suppression technique removes intense whiteness of fat signal that can obscure other signals
 1. Particularly useful for orbit imaging

H. Fluid-attenuated inversion recovery (FLAIR)
 1. Disease processes which often show high T2 signal may be difficult to identify against the high signal of the CSF. FLAIR provides T2 weighted images without the high (white) cerebrospinal fluid signal
 2. FLAIR imaging is CSF suppression, analogous to fat suppression on T1 images
 3. FLAIR is thus ideal for viewing periventricular white matter changes
 a. Demyelinating process such as multiple sclerosis
 b. Edema
 c. Changes from cortical stroke, and other white matter disease

I. Diffusion weighted images (DWI)
 1. Sensitive to acute ischemia causing cytotoxic edema appearing as high signal (white)
 2. Similar changes with high signal seen in other forms of inflammation
 3. Ideal for identifying acute ischemia

J. ADC map low (dark) signal confirms area seen on DWI is ischemic

K. MRA / MRV
 1. Can be used to obtain images of the proximal large vessels of the chest and neck as well as CNS arteries and veins
 2. Records signals from fast-moving particles such as blood, while signals from stationary tissues are suppressed

V. List the complications of the procedure, their prevention and management
A. Gadolinium allergy

B. Gadolinium induced nephrogenic systemic fibrosing syndrome
 1. Seen mainly in patients with renal insufficiency, elderly, diabetic
 2. Scleroderma -like changes

VI. Describe the considerations in interpretation of this diagnostic procedure

A. Provide details of patient clinical information, differential diagnosis and expected location of pathology to radiologist to make sure that the correct imaging sequences will be performed

B. When imaging study fails to demonstrate expected pathology or answer a clinical question, the first step is to re-examine the studies with a neuroradiologist to determine if the appropriate studies were performed and area of interest adequately imaged

C. Motion artifact may degrade quality of images

D. Presence of braces, mascara, permanent eyeliner or other metallic implants (including nonferromagnetic aneurysm clips or coils may also degrade quality of imaging

Additional Resources

1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.
Migraine

I. Describe the approach to establishing the diagnosis

A. List the pertinent elements of the history
 1. Repetitive, stereotypic bouts of headache
 2. Family history of headaches
 3. History of motion sickness
 4. Cold-induced vascular headache
 5. Often temporal relationship to menstrual cycle
 6. Typical headache features
 a. Quality: pulsating or throbbing
 b. Location: Unilateral head pain that may alternate sides; may include face pain
 c. Precipitating factors: Foods, menstrual cycle, stress
 d. Age at onset: often begin in childhood, adolescence, or the second or third decade of life
 e. Daily pattern (am or pm); headaches that awaken patients at night are rarely migraine
 7. Associated symptoms
 a. Nausea, emesis
 b. Photophobia, phonophobia
 c. Scintillating scotoma

B. Define the relevant aspects of epidemiology of the disease
 1. Typically develops in childhood or adolescence
 2. Women more commonly affected
 3. Often (2/3) positive family history
 4. If new onset elderly patients consider giant cell arteritis (GCA)

C. Describe pertinent clinical features
 1. May be induced by precipitating factors (see above) including hormonal changes, stress, caffeine withdrawal, certain foods or wines, or change in sleep pattern
 2. Migraine with aura (previously termed classic migraine)
 a. Preceded by aura < 60 minutes long
 b. Imagery builds up over minutes with positive visual phenomena with movement (fortification spectrum)
 c. Followed by mild to severe throbbing headache
 d. Headache may occur in any location
 e. Last several hours or possibly days
 f. Associated with photophobia and nausea
 3. Migraine without aura (previously termed common migraine)
 a. No preceding neurologic symptoms
 b. Diffuse (global) headache
 c. Unilateral or bilateral headache

D. Describe appropriate testing and evaluation for establishing the diagnosis
1. Neuroimaging: Magnetic resonance imaging (MRI) of brain for atypical migraine features
 a. Headache or aura always on same side
 b. Neurologic deficits
 c. Visual phenomenon not typical
 d. Duration not typical
2. Lumbar puncture to check opening pressure, cells, glucose and protein in the presence of signs and symptoms of raised intracranial pressure or meningitis

II. Define the risk factors
 A. Family history
 B. Precipitating foods
 C. Stress or relief from stress
 D. Change in sleep patterns
 E. Cigarette smoke
 F. A variety of environmental influences may precipitate migraine

III. List the differential diagnosis
 A. Brain AVM or tumor
 B. Increased ICP
 C. Malignant hypertension
 D. Vascular events
 E. GCA in the elderly
 F. Meningitis
 G. Temporomandibular joint disorder
 H. Tension headache and other headache syndromes, especially sympathetic pain syndromes

IV. Describe patient management in terms of treatment and follow-up
 A. Acute medications
 1. Abortive
 2. Analgesic
 B. Prophylactic medications
 C. Supportive measures
 D. Maintain a headache log to assess headache (in terms of frequency and severity) and its response to medications and to identify precipitating factors
 E. Eliminate precipitating environmental influences

V. List the complications of treatment, their prevention and management
 A. Overuse of caffeine can result in rebound headaches
 B. Analgesic rebound headache
 C. Potential side effects of abortive, prophylactic or therapeutic migraine agents
VI. Describe disease-related complications
 A. Loss of time from family, school or work
 B. Stroke (rare)
 C. Persistent visual field deficit (rare)

VII. Describe appropriate patient instructions
 A. Avoid stress as much as possible
 B. Avoid foods known to be triggers
 C. Maintain consistent sleep schedule
 D. Appropriate referral to headache specialist for management

Additional Resources
 1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.
I. Describe the approach to establishing the diagnosis

A. Definition: Optic nerve head edema resulting from increased intracranial pressure (ICP)

B. Define the relevant aspects of epidemiology of disease

1. Depends on the etiology of increased ICP
 a. Brain tumor
 i. Any age or gender possible
 ii. Tumor type is correlated to age of patient
 b. Pseudotumor cerebri (PTC)
 i. Idiopathic intracranial hypertension (IIH)
 i) Obese women
 ii) Higher incidence in women of childbearing age
 iii) In prepubescent children the risk profile is different: no sex, body mass difference
 ii. Secondary causes
 i) Infection- Any age or gender possible
 ii) Inflammation
 iii) Sarcoïdosis
 iv) Vascular: dural venous sinus thrombosis
 v) Medication induced: Vitamin A, tetracyclines, lithium, steroid withdrawal, nalidixic acid

C. List the pertinent elements of the history

1. Symptoms of increased ICP
 a. Headache
 b. Nausea & vomiting
 c. Transient visual obscurations lasting seconds
 d. Intracranial noises (humming or ringing) or pulsations

2. Diplopia due to sixth nerve palsy, unilateral or bilateral

3. Decreased vision

4. Visual field deficits (enlargement of the blind spot initially)

5. Other neurologic symptoms suggestive of hydrocephalus or mass effect

6. Presence of systemic disease
 a. Brain tumor or malignancy
 b. Other neurologic symptoms or meningitis symptoms
 c. Hypercoagulable state
 d. Autoimmune disease

D. Describe pertinent clinical features

1. Optic disc swelling - typically at the lower pole then upper, followed by nasal then temporal portions

2. Peripapillary nerve fiber layer opacification - usually bilateral but may be asymmetric

3. Lack of spontaneous venous pulsations (may be a normal finding in some patients)
4. Hyperemia from dilation and telangiectasia of the surface disc capillaries
5. Venous engorgement and tortuosity of the vessels
6. Obliteration of central cup (late finding)
7. Hemorrhages and exudates
8. Paton lines (circumferential retinal folds in the region surrounding the disc)
9. Choroidal folds
10. If chronic, optic atrophy may ensue, refractile bodies (“pseudodrusen”) may be seen late
11. If chronic, optociliary shunt vessels (retinochoroidal collaterals)
12. Can be confused with pseudopapilledema due to optic nerve head drusen, hyperopic, anomalous discs, or myelinated nerve fibers
13. Afferent function usually normal early (central visual acuity, color, pupils and visual fields) but visual fields are key to management at all stages
14. Cranial nerve (CN) VI palsy may be present

E. Describe appropriate testing and evaluation for establishing the diagnosis

1. Neuroimaging (magnetic resonance imaging (MRI) preferred) - done urgently when papilledema is suspected
 a. Must rule out a brain mass lesion
2. Ultrasound -B-mode or optic nerve head autofluorescence for buried drusen
3. Magnetic resonance venography (MRV) or other venous studies to rule out a dural venous sinus thrombosis as the cause of papilledema
4. Lumbar puncture to determine opening pressure and CSF composition including cells, protein and glucose if no contraindications
 a. False opening pressure determinations assessed in other than lateral decubitus or prone patient position

II. Define the risk factors

A. Females
B. Recent weight gain
C. Excess vitamin A intake
D. Medications (see above)
E. Venous sinus thrombosis
F. Possible role of other venous sinus abnormalities or jugular vein issues

III. List the differential diagnosis

A. Pseudopapilledema (optic nerve head drusen, hyperopic or anomalous discs, vitreopapillary traction, myelinated nerve fibers)
B. Malignant hypertension
C. Bilateral disc edema not due to increased ICP (i.e., other bilateral optic neuropathies)

Additional Resources

1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.

Pseudotumor cerebri (PTC) and Idiopathic Intracranial Hypertension (IIH)

I. Describe the approach to establishing the diagnosis

A. Definition of PTC: Patients with signs and symptoms of increased intracranial pressure (ICP) with papilledema, normal brain MRI, normal CSF composition with documented elevated pressures on spinal tap. Note: IIH is defined with all the criteria above when no other cause of elevated ICP is identified.

B. Define risk factors and the relevant aspects of epidemiology of the disease

1. Majority of patients are obese women
2. Childbearing years
3. Exposure to agents associated with pseudotumor cerebri, including:
 a. Vitamin A (>100,000 U/day), retinoids and other derivatives (retinoic acid, isotretinoin)
 b. Tetracyclines, doxycycline, minocycline
 c. Lithium
 d. Steroids withdrawal
 e. Nalidixic acid
4. Systemic illnesses associated with PTC
 a. Sleep apnea
 b. Endocrine & metabolic disturbances
 i. Polycystic ovarian syndrome (PCOS)
 c. Severe anemia, hypercoagulable states
 d. Cerebral venous disorders (obstruction, trauma, childbirth)

C. List the pertinent elements of the history

1. Symptoms of increased ICP
 a. Headache (may be worse with reclining or upon awakening)
 b. Nausea, vomiting
 c. Transient visual obscurations lasting seconds
 d. Intracranial noises (humming or ringing) or pulsatile tinnitus (pulse synchronous bruit)
2. Double vision secondary to 6th nerve i.e. abducens palsy (only focal neurological deficit allowed for diagnosis of PTC)
3. Decreased vision
4. Other neurologic symptoms suggestive of hydrocephalus or mass effect
5. Presence of systemic disease
 a. Brain tumor or malignancy
 b. Other neurologic symptoms or meningitic symptoms
 c. Hypercoagulable state
 d. Systemic autoimmune, infectious or inflammatory diseases

D. Describe pertinent clinical features
1. Bilateral disc edema
2. Hyperemia of optic disc surface, venous engorgement, obliteration of central cup, lack of spontaneous pupations (may be a normal finding), and peripapillary nerve opacification
3. Peripapillary/epipapillary hemorrhages and cotton wool spots
4. Paton's lines (circumferential retinal folds in the region surrounding the disc)
5. Visual field findings range from enlarged blind spots seen early in the course of the disease to diffuse depression in sensitivity.
 a. Enlarged physiologic blind spot
 b. Nerve fiber bundle defects
6. Unilateral or bilateral 6th/abducens cranial nerve palsy
7. Atypical features
 a. Non-obese adult
 b. Male
 c. Unilateral disc swelling
 d. Multiple cranial neuropathies
 e. Vitreous cells
 f. Retinal hemorrhages beyond the peripapillary area
 g. Acuity loss without atrophy unless secondary to macular edema

E. Describe appropriate testing and evaluation for establishing the diagnosis
1. Neuroimaging (magnetic resonance imaging (MRI) findings in IIH include: flattening of globe, enlarged optic nerve sheaths, empty sella.
2. Magnetic resonance venography (MRV) or other venous studies preferred) to rule out other causes of papilledema
3. Lumbar puncture (opening pressure, cells, protein, glucose)
 a. If the case is atypical (e.g. wrong age or gender-see D.7.) or the clinical symptoms are signs are not characteristic, additional work-up should include evaluations for infection, inflammation and/or neoplasia
4. Blood pressure
 b. Should be checked, especially in cases with cotton wool spots, to exclude malignant systemic hypertension
5. Blood testing: CBC for anemia

III. List the differential diagnosis
A. Pseudopapilledema including disc drusen with headache
B. Secondary increased intracranial pressure
 1. Meningitis: inflammatory, sarcoidosis, neoplastic
C. Venous sinus thrombosis
D. Classic complete macular star is NOT characteristic and suggests an alternative cause such as infection or vasculitis
E. Dot blot hemorrhages may be seen out to the mid-periphery due to venous stasis from chronic papilledema, but need r/o CRVO with this finding.
F. Malignant hypertension
G. Functional overlay
H. Migraine headache
I. Other headache syndrome in conjunction with PTC are not uncommon
IV. Describe patient management in terms of treatment and follow-up

A. Role of the visual field
 1. Follow-up and intervention determined by severity of visual field defect and headache

B. Weight reduction

C. Describe medical therapy options
 1. Acetazolamide and other carbonic anhydrase inhibitors
 2. Topiramate
 3. Furosemide (if acetazolamide or topiramate intolerant) but not very effective in lowering intracranial pressure.
 4. Role of corticosteroids
 a. IV corticosteroids may have temporizing role in the management of advanced visual loss and prior to surgery
 5. Additional therapy for headache as needed

D. Describe surgical therapy options
 1. Optic nerve sheath fenestration
 a. For treatment of severe and/or progressive visual loss not responsive to maximally tolerated medical therapy
 b. Not a primary therapy when headache is the dominant feature
 2. Cerebrospinal fluid (CSF) diversion procedures (lumboperitoneal shunt or ventriculoperitoneal shunt)
 a. Serial lumbar punctures should be discouraged
 b. For treatment of intractable headache and/or progressive visual loss not responsive to maximally tolerated medical therapy
 3. Bariatric surgery
 a. May be considered as an adjunct therapy for morbidly obese patients where diet and exercise have failed to result in weight loss

V. List the complications of treatment, their prevention and management

A. Acetazolamide
 1. Nausea and emesis
 2. Numbness and tingling of extremities/perioral area
 3. Metabolic acidosis
 4. Dysgeusia for carbonated beverages
 5. Kidney stones
 6. Blood dyscrasias
 7. Hypokalemia especially if used with other diuretics

B. Optic nerve sheath fenestration
 1. Immediate or eventual fenestration failure
 2. Visual loss
 a. Due to direct optic nerve trauma or vascular occlusion
 3. Diplopia
 a. Due to medial rectus muscle detachment and reattachment during medial approach to optic nerve
 4. Tonic pupil
a. Due to ischemia or direct trauma to the ciliary ganglion or its innervation during lateral approach to the optic nerve

C. CSF diversion procedures
 1. Immediate or delayed shunt failure
 2. Infection (peritonitis or meningitis)
 3. Abdominal or Back pain
 4. Shunt Migration
 5. Visual loss despite functioning shunt
 6. Low pressure headache due to over filtration

D. Bariatric surgery
 1. Immediate or eventual bypass failure
 2. Nausea and vomiting
 3. Diarrhea
 4. Abdominal pain
 5. Malabsorption

VI. Describe disease-related complications
 A. Permanent loss of visual acuity and/or field
 B. Optic atrophy
 C. Persistent headache despite normal ICP
 D. Depression
 E. Diplopia

VII. Describe appropriate patient instructions
 A. Encourage weight loss, by dieting or surgical methods
 B. Stress that compliance with follow-up examinations, to include visual field testing, is crucial
 C. Discuss why visual field testing is essential
 D. Educate about common acetazolamide side effects
 E. Consider checking electrolytes and complete blood count (CBC) shortly after starting acetazolamide

Additional Resources
 1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.
Orbital cellulitis

I. Describe the approach to establishing the diagnosis

A. Describe the etiology of the disease

1. Extension of infection from periorbital structures
 a. Paranasal sinuses
 i. Direct spread from an adjacent sinusitis in the majority of cases (most likely if no other obvious source)
 ii. Rarely associated with orbital fracture
 b. Face and eyelids
 c. Dacryocystitis
 d. Dental infection
 e. Intracranial
 f. Concomitant orbital abscess
 g. Endophthalmitis

2. Exogenous
 a. Direct inoculation following trauma or skin infection
 i. Trauma
 i) Need to rule out foreign body or orbital fracture
 ii. Postsurgical (any orbital or periorbital surgery)

3. Endogenous
 a. Bacteremic spread from a distant focus (otitis media, pneumonia) with septic embolization

4. Intraorbital
 a. Endophthalmitis
 b. Dacryoadenitis

B. Define the relevant aspects of epidemiology of the disease

1. In more than 90% of cases, orbital cellulitis occurs as a secondary extension of acute or chronic bacterial sinusitis

2. Organisms most commonly associated with orbital cellulitis include:
 a. *Staphylococcus* species
 b. *Streptococcus* species
 c. Bacteroides
 d. Gram-negative rods (especially after trauma)
 e. Anaerobes
 f. Methicillin resistant staff aureus (MRSA)
 g. H.flu less common cause of childhood disease with Hib vaccine usage

C. List the pertinent elements of the history

1. Trauma
2. Ear, nose, throat or systemic infections
3. Diabetes mellitus
4. Immunosuppression
5. Ocular symptoms
 a. Pain
 b. Decreased vision
 c. Diplopia
 d. Swelling
 e. Ptosis

D. Describe the pertinent clinical features
1. General (in only some cases)
 a. Fever
 b. Leukocytosis
2. Local
 a. Proptosis
 b. Conjunctival injection and chemosis
 c. Eyelid edema, often tense edema
 d. Ptosis
 e. Erythema, warmth
 f. Orbital tenderness
 g. Restriction of ocular motility
 h. Pain with eye movement
 i. Optic nerve dysfunction (decreased vision, afferent pupillary defect, visual field changes, dyschromatopsia)
 j. Optic disc edema

E. Describe appropriate testing and evaluation for establishing the diagnosis
1. Evaluation of the orbits and paranasal sinuses with computed tomography (CT) scan or MRI
2. Otolaryngology consult if sinusitis is identified
3. Complete blood count with differential
4. Blood cultures (often negative)
5. Explore and debride any associated wound or skin lesion, culture any drainage

II. Define the risk factors
 A. Sinusitis
 B. Skin infection or preseptal cellulitis
 C. Diabetes mellitus
 D. Trauma (orbital fracture, foreign body in orbit)
 E. Systemic infection
 F. Immunosuppression

III. List the differential diagnosis
 A. Preseptal cellulitis
 B. Orbital inflammatory pseudotumor
C. Wegner granulomatosis
D. Trauma
E. Mucormycosis
F. Sarcoidosis
G. Aspergillosis
H. Carotid-cavernous fistula or dural AVM
I. Cavernous sinus thrombosis
J. Dysthyroid ophtalmopathy
K. Necrotizing fasciitis
L. Orbital tumors i.e. lymphoma
M. In children: lymphangioma
N. Ruptured dermoid

IV. Describe patient management in terms of treatment and follow-up

A. Describe medical therapy options
 1. Broad spectrum IV antibiotics often for prolonged course
 2. Follow the patient
 a. Vitals, CBC
 b. Visual acuity
 c. Pupillary function (afferent and efferent)
 d. Ocular motility
 e. Degree of proptosis and globe displacement
 f. External appearance
 g. Corneal exposure
 h. Intraocular pressure
 i. Contralateral involvement
 3. Abscesses in children under 9 years
 a. More likely to resolve without surgery and with medical therapy alone
 b. More likely to involve a single pathogen as opposed to similar infections in adults which tend to involve multiple organisms
 4. If worsening, the presence of an abscess should be suspected
 a. Repeat CT scan of orbit and/or brain indicated
 b. Infectious disease specialist consultation
 5. If improving, can consider switch to oral antibiotics.

B. Describe surgical therapy options
 1. Strongly consider draining affected sinuses if sinusitis present, especially in adults and older children
 2. Incision and drainage of orbital abscess

V. List the complications of treatment, their prevention and management

A. Abscess formation intraorbital or subperiosteal should be suspected if continuous improvement does not occur
B. Surgical complications include diplopia, ptosis, visual loss

VI. Describe disease-related complications

A. Delay in treatment may result in

3. Progression of infection
4. Orbital apex syndrome
5. Cavernous sinus thrombosis
6. Blindness
7. Cranial nerve palsies
8. Meningitis
9. Intracranial abscess formation
10. Death

B. These can be avoided with aggressive management

VII. Describe appropriate patient instructions

A. Patient instruction depends upon course of treatment agreed upon by the patient and ophthalmologist

B. Contact ophthalmologist, if new symptoms develop

C. Follow-up examinations important

Additional Resources

1. AAO, Basic and Clinical Science Course. Section 7: Orbit, Eyelids, and Lacrimal System, 2015-2016.
Aspergillosis

I. Describe the approach to establishing the diagnosis

A. Describe the etiology of this disease
 1. Aspergillus is a ubiquitous filamentous septate saprophytic mold, although exposure is common, ocular infection is rare but can result in devastating consequences, *Aspergillus fumigatus* is the most common pathogen

B. Define the relevant aspects of the epidemiology of the disease
 1. Contracted by
 a. Inhalation or oral ingestion of spores
 b. Hematogenous spread to the choroid

C. List the pertinent elements of the history
 1. Review of patient general health including
 a. Immunosuppression
 b. Debilitation

D. Describe pertinent clinical features (several clinical variations)
 1. Allergic aspergillosis affects bronchopulmonary system and paranasal sinuses
 a. History of chronic sinusitis in immunocompetent host
 b. Occasionally orbital and neuro-ophthalmic findings with involvement of sinuses
 i. Optic neuropathy
 ii. Proptosis
 iii. Diplopia
 iv. Headache
 2. Saprophytic non invasive
 3. Aspergillomas -fungus balls arising in poorly drained spaces such as the orbit, paranasal sinuses
 a. Can occur in immunocompromised or immunocompetent patients
 b. Symptoms of orbital mass
 i. Proptosis
 ii. Visual loss
 iii. Diplopia
 iv. Pain
 4. Invasive aspergillosis in immunocompromised patients (cancer, acquired immune deficiency syndrome (AIDS), organ transplant, rheumatology patients on immunosuppressives)
 a. Initial sinus or pulmonary involvement with subacute or acute progression
 b. Central nervous system (CNS) infection occurs secondarily by either direct or hematogenous spread of organisms
 c. Ophthalmic manifestations
 i. Acute retrobulbar optic neuropathy
 ii. Orbital apex syndrome
 iii. Endophthalmitis
 iv. Cavernous sinus syndrome
d. Vascular invasion produces cerebral infarction or hemorrhage
e. Meningitis, intracranial abscess, epidural and subdural hematomas and abscesses, mycotic aneurysm, encephalitis, cavernous sinus thrombosis, intracranial abscess

E. Describe appropriate testing and evaluation for establishing the diagnosis
 1. Imaging studies of the brain or orbit as appropriate
 2. Culture of tissue, blood, CSF may be negative
 3. Biopsy of affected tissue essential and demonstrates tissue necrosis and vascular invasion

II. Define the risk factors
 A. Aggressive acute disease, usually in immunocompromised
 1. Diabetic
 2. Elderly
 3. Cancer patients
 4. Immunocompromised patients of any nature
 B. Infected paranasal sinus or nose
 C. Early recognition is key to successful outcome of treatment

III. List the differential diagnosis
 A. Mucormycosis or other fungal infection
 B. Tumor (i.e., sinus, orbital)
 C. Bacterial infection

IV. Describe patient management in terms of treatment and follow-up
 A. Describe medical therapy options
 1. Systemic immunomodulation for allergic fungal disease
 2. Antifungal medication
 a. Amphotericin B and other antifungals
 b. Role in chronic allergic aspergillosis unclear
 3. Correction of underlying metabolic abnormality
 B. Describe surgical therapy options
 1. Surgical debridement/excision of necrotic tissue is essential
 2. Direct perfusion of involved tissue with antifungal agents has been described as a potential adjunctive therapy to systemic antifungal therapy and local debridement

V. List the complications of treatment, their prevention and management
 A. Post-surgical deformity
 B. Loss of vision
 C. Renal failure

VI. Describe disease-related complications
A. Endophthalmitis
B. Intracranial abscess
C. Cerebral infarcts
D. Necrosis
E. Mycotic aneurysms
F. Morbidity is high with CNS involvement

VII. Describe appropriate patient instructions

A. Patient instruction depends upon course of treatment agreed upon by the patient and physician
B. Contact physician if new neurological symptoms develop
C. Close follow-up for recurrence

Additional Resources

1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.
Mucor

I. Describe the approach to establishing the diagnosis

A. Describe the etiology of this disease
 1. Mucormycosis describes several different presentations of fungal infections of the class Zygomycetes, histologically have large nonseptate branching hyphae

B. Define the relevant aspects of the epidemiology of the disease
 1. Ubiquitous in environment
 2. Fungus gains entry through respiratory tract
 3. Iron potentiates growth of mucor
 a. Mucor has an affinity for blood vessels
 b. Mucor grows through blood vessel walls producing thrombosis, hemorrhage and ischemic tissue necrosis
 c. Aneurysms or pseudoaneurysms may develop

C. List the pertinent elements of the history
 1. Most cases limited to debilitated (elderly, cancer), injured (burn), diabetic or immunocompromised patients
 2. Course is usually acute and rapid although a chronic indolent variation can occur

D. Describe pertinent clinical features
 1. Mucormycosis in immunocompromised patients
 a. Involvement of facial skin, nasal, sinus or hard palate mucosa and spreads to nearby blood vessels
 b. Invasion of orbit causing cellulitis, orbital apex syndrome, cavernous sinus thrombosis, arterial thrombosis
 c. Headache and facial pain or numbness
 d. Facial swelling
 e. Fever
 f. Sinusitis
 g. Pharyngitis
 h. Nasal discharge
 i. Eyelid swelling
 j. Pain with eye movement, apical boring pain
 k. Redness
 l. Chemosis
 m. Proptosis
 n. Limitation of eye movement
 o. Painful diplopia
 p. Eschar of skin, palate and nasal mucosa is a late finding but characteristic
 2. Complications
 a. Vision loss can be abrupt and often related to retinal and choroid infarction or occlusion
 i. Can also be due to fungal infiltration of optic nerve
 b. Cranial neuropathy can occur
 i. Especially II, III, IV, V, VI
ii. Other cranial nerves including V if disease extends beyond orbital apex and cavernous sinus

c. Neurologic manifestations of meningitis and parenchymal invasion
d. Untreated rhinocerebral mucormycosis may bring about rapid deterioration leading to blindness and death within days
e. Cutaneous with skin lacerations or burns or disseminated disease
f. Gastrointestinal with extreme malnutrition or other gastrointestinal disease
g. Fungus gains entry to CNS from nose or paranasal sinus

E. Describe appropriate testing and evaluation for establishing the diagnosis

1. Computed tomography (CT) scan can show bony destruction, soft tissue alteration in paranasal sinuses and orbit, air-fluid levels in sinus and orbit, or brain abscess.
2. Magnetic resonance imaging (MRI)/magnetic resonance angiography (MRA)/angiography for thrombosis of major vessels
3. Biopsy is essential as imaging findings can be nonspecific and cultures can be negative. Pathology shows vascular invasion and tissue necrosis (seen clinically as a black eschar, which is a classic but late finding), inflammatory cells and hyphae

II. Define the risk factors

A. Rhinocerebral mucormycosis in patients with diabetes mellitus, particularly in those with ketoacidosis, in patients receiving corticosteroids, or neutropenia
B. Immunosuppressed and debilitated patients, such as cancer patients

III. List the differential diagnosis

A. Aspergillosis
B. Orbital cellulitis
C. Idiopathic orbital inflammatory disease or Wegner
D. Sino-orbital tumors

IV. Describe patient management in terms of treatment and follow-up

A. Invasive fungal infection is a life threatening as well as vision threatening emergency, and requires aggressive intervention by teams of specialists in inpatient settings
B. Describe medical therapy options
 1. Identify and treat underlying systemic disease including hyperglycemia and acidosis
 2. Antifungal drugs, especially amphotericin B
C. Describe surgical therapy options
 1. Debridement of devitalized tissues essential with possible intraoperative or postoperative irrigation
 2. Exenteration if needed but all efforts to avoid if it is possible to preserve useful vision

V. List the complications of treatment, their prevention and management

A. Mortality is high with rhinocerebral and CNS mucormycosis

VI. Describe appropriate patient instructions

A. Patient instruction depends upon course of treatment agreed upon by the patient and physician
B. Contact physician if new neurological symptoms develop
C. Follow-up examinations important

Additional Resources
1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.
Non arteritic anterior ischemic optic neuropathy

I. Describe the approach to establishing the diagnosis

A. Describe the etiology of the disease
 1. Infarction of the optic nerve head in area of the short posterior ciliary arteries

B. Define the relevant aspects of the epidemiology of the disease
 1. Most common acute optic neuropathy in patients over 50 years old
 2. On average, patients present in the fifth decade and tend to be younger age than arteritic forms but significant crossover
 3. Male = female

C. List the pertinent elements of the history
 1. Painless monocular visual loss that develops over hours to days, often first noted on awakening
 2. Absence of symptoms of GCA (e.g., malaise, headache, neck pain, jaw claudication, scalp tenderness, fever, chills, anorexia, weight loss, fatigue, myalgias, arthralgias, diplopia, antecedent amaurosis fugax, tenderness over the temporal arteries)

D. Describe the pertinent clinical features
 1. Decreased visual acuity
 2. Relative afferent pupillary defect if unilateral or if bilateral and asymmetric
 3. Color vision usually less affected than in other optic neuropathies with comparable acuity loss
 4. Visual field defects
 a. Typically altitudinal or arcuate, inferior most common
 5. Optic nerve edema with or without associated peripapillary hemorrhages or cotton wool spots
 a. At onset or may precede vision loss
 b. Segmental swelling most common but may not consistently correspond to VF loss
 c. May be diffuse
 6. Vision can worsen in the first few weeks and usually stabilizes by 2 months
 7. Variable limited visual recovery
 8. Increased incidence of fellow eye over time (Approximately 3%/yr in IOND study)

E. Pertinent anatomic correlations
 1. Infarction within the scleral canal - compartment syndrome theory
 2. The arterial supply in the region of the lamina cribrosa is derived from the branches of the short posterior ciliary arteries that form a dense capillary plexus
 3. The prelaminar region is supplied mainly by the branches of the peripapillary choroidal vessels

F. Describe the appropriate testing and evaluation for establishing the diagnosis
 1. Serologic
 a. Complete blood count (CBC) with platelets
 b. Erythrocyte sedimentation rate (ESR)
 c. C-Reactive protein (CRP)
 d. Assessment for diabetes mellitus
II. Define the risk factors

A. Non-arteritic
 1. Small to absent optic cup
 2. Diabetes mellitus
 3. Hypertension
 4. Cigarette use
 5. Elevated lipids
 6. Possible role of sleep apnea
 7. Possible role of nocturnal hypotension
 8. Possible phosphodiesterase-5 inhibitor (erectile dysfunction drug) use amiodarone use

III. List the differential diagnosis

A. Arteritic ischemic optic neuropathy
B. Optic neuritis
C. Diabetic papillitis
D. Disc drusen / pseudopapilledema
E. Compressive optic neuropathy
F. Central retinal vein occlusion
G. Infiltrative optic neuropathy
H. Leber hereditary optic neuropathy

IV. Describe patient management in terms of treatment and follow-up

A. Describe medical therapy options
 1. No proven therapy
 2. Persistent optic nerve edema beyond 6-10 weeks or progressive vision loss beyond 1st month requires further evaluation

V. Describe disease related complications

A. Failure to recover vision

VI. Describe appropriate patient instructions

A. Call immediately for worsening of vision, episodes of amaurosis, or development of symptoms of GCA
B. Control vasculopathic risk factors in NAION in coordination with primary care physician

Additional Resources
1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.
4. AAO, Focal Points: Giant Cell Arteritis, Module #6, 2005.
I. Describe the approach to establishing the diagnosis

A. Describe the etiology of this disease
 1. Inflammatory thrombosis of medium-sized arteries with an elastic lamina (short posterior ciliary arteries)

B. Define the relevant aspects of epidemiology of the disease
 1. Age greater than 50, (mean age 70) years
 2. Female > Male
 3. Increased incidence in Caucasians

C. List the pertinent elements of the history
 1. Acute visual loss typically without eye pain
 2. Visual loss may be preceded by amaurotic episodes
 3. Diplopia
 4. Symptoms of giant cell arteritis (GCA) (e.g. headache, jaw claudication, scalp tenderness, fever, weight loss, fatigue, myalgias, diplopia, antecedent amaurosis fugax)
 a. May be absent - occult GCA
 b. History of polymyalgia rheumatica (PMR)

D. Describe pertinent clinical features
 1. Decreased visual acuity
 a. Often severe visual loss
 i. From counting fingers to no light perception
 b. May be bilateral at presentation, however onset is usually sequential
 2. Decreased color vision
 3. Afferent pupillary defect if unilateral or if bilateral and asymmetric
 4. Visual field defects
 a. Nerve fiber bundle defects
 b. Altitudinal loss
 c. Generalized depression
 5. Pallid optic nerve edema with or without associated peripapillary hemorrhages or cotton wool spots
 a. May rarely present with posterior ischemic optic neuropathy (i.e. no disc swelling)
 6. May have normal or large cup: disc ratio of optic nerve
 7. Retinal ischemia (e.g., CRAO, hemorrhages, cotton wool spots)
 8. Choroidal ischemia may also be present
 9. Involvement of individual or multiple extraocular muscles not corresponding to an isolated ocular motor nerve may occur

E. Describe appropriate testing and evaluation for establishing the diagnosis
 1. Serologic
 a. Complete blood count (CBC) with differential and platelet count, looking for anemia of chronic disease and thrombocytosis
b. Erythrocyte sedimentation rate (ESR)
 i. ESR may be normal

c. C-reactive protein (CRP)
 i. CRP may be normal
 ii. more sensitive than ESR

2. Use of fluorescein angiogram as adjunct test
 a. Delayed/patchy choroidal filling

3. Superficial temporal artery biopsy if elevated acute phase reactants and/or symptoms/ signs suggestive of giant cell arteritis (GCA)
 a. Obtain temporal artery biopsy as early as feasible
 i. Large specimen (>2 cm if possible) due to skip lesions

II. Define the risk factors
 A. History of PMR
 B. Age

III. List the differential diagnosis
 A. Non-arteritic anterior ischemic optic neuropathy (NAION)
 B. Disc drusen / pseudopapilledema
 C. Infiltrative optic neuropathy
 D. Compressive optic neuropathy
 E. Other forms of visual loss from GCA

IV. Describe patient management in terms of treatment and follow-up
 A. Goal of therapy is to avoid contralateral vision loss and prevent systemic vascular complications
 B. Describe medical therapy options
 1. Immediate high dose corticosteroids, with slow taper over many months to years
 2. Follow with serial clinical exams
 3. Monitor systemic symptoms of GCA

V. List the complications of treatment, their prevention and management
 A. Medical monitoring of corticosteroid-induced side-effects as per discretion of internist (See Systemic corticosteroids in neuro-ophthalmology)

VI. Describe disease-related complications
 A. Blindness
 B. Systemic effects of arteritis
 1. Coronary arteritis
 2. Renal arteritis
 3. Stroke is rare
C. Local effects of arteritis

1. Ocular ischemic syndrome
2. Diplopia

VII. Describe appropriate patient instructions

A. Call immediately for worsening of vision or development/worsening symptoms of GCA or for treatment complications

Additional Resources

1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.
7. AAO, Focal Points: Giant Cell Arteritis, Module #6, 2005.
I. Describe the approach to establishing the diagnosis

A. Describe the etiology of this disease
 1. Dynamic process progressing with age, important because of fundus appearance, differential diagnosis, and occasional occurrence of slow progressive visual loss
 2. Progressive "fullness" of optic nerve head, especially in cases of non-surface "buried" optic disc drusen
 3. "Hyaline" or "colloid" bodies of imprecisely determined etiology
 4. These bodies enlarge, may calcify, and become more prominently localized on the surface of optic nerve head, making them more recognizable with increasing patient age
 5. Early disc elevation of younger aged patients gives way to more calcified appearing focal excrescences in older patients
 6. Long term compression of optic nerve fiber layer emerging from disc may lead to visual field loss, rarely acuity loss, and other rare complications (e.g. peripapillary SRNV)

B. Define the relevant aspects of epidemiology of the disease
 1. Inheritance pattern
 a. Sporadic
 b. Occasionally autosomal dominant transmission
 2. May be associated with other ocular and systemic disease
 3. Does not preclude the possibility of concurrent true papilledema/optic nerve edema
 4. Commonly bilateral but may be asymmetric
 5. No known male/female preponderance

C. List the pertinent elements of the history
 1. A commonly encountered entity in patients with the false appearance of papilledema (pseudopapilledema)
 2. Typically lack signs and symptoms of raised intracranial pressure
 3. May present with transient visual obscurations
 4. Patients have typically undergone extensive workup for true papilledema or other causes of disc edema because of funduscopic features noted on a routine examination
 5. Patients may not be aware of constricted visual field
 6. Typically, slowly progressive visual change, but may develop accelerated or rarely acute visual loss
 a. AION
 b. Peripapillary subretinal neovascularization with hemorrhage

D. Describe pertinent clinical features
 1. Simulates the "full" optic nerve appearance of papilledema
 2. Typically, optic nerve changes and loss of nerve fiber layer reflex are confined to disc rather than extending to peripapillary retina as a differentiating feature (i.e. no obscuration of retinal vessels at the disc margin, but may be present in some cases)
 3. Anomalous retinal vascular branching pattern
 4. Spontaneous venous pulsations may be present or absent. If present, the finding supports that the intracranial pressure is normal and the disc appearance represents pseudopapilledema rather than papilledema from raised intracranial pressure
 5. Fullness of optic nerve with nerve fiber layer opacity may be replaced by coalescing refractile excrescences
 6. Some or all of the features of true papilledema are occasionally present making absolute differentiation from true papilledema very difficult without serial observation
7. May have deep circumpapillary retinal hemorrhages (as opposed to radial nerve fiber layer hemorrhages of other optic neuropathies)

E. Describe appropriate testing and evaluation for establishing the diagnosis

1. Funduscopic features often diagnostic
2. Photographic documentation of appearance helps establish stability, a differentiating feature from other entities causing papilledema
3. Serial visual field testing appropriate for long term disease monitoring
4. Some cases very difficult to differentiate from other causes of pseudopapilledema, and diagnostic techniques (ultrasonography, fluorescein angiography, and other techniques) may not always aide in differentiation from other entities
5. The following may contribute to identifying the presence of disc drusen
 a. Ultrasound features especially if calcified
 b. Red free fundus photography (to follow nerve fiber layer defects)
 c. Review of previously performed CT scans with axial images through the optic nerve head may identify calcified drusen with further investigation not required (presuming superimposed pathology not identified)
 d. Autofluorescent photography (To visualize drusen)
 e. Fluorescein angiography
 f. OCT line scan through ON head can show discrete hyperreflective drusen
6. Occasionally diagnosis may be established by examining other family members
7. Ancillary testing to differentiate from other disease that may cause raised intracranial pressure, optic neuropathy, and or infiltrative optic nerve disease, including a neurologic examination

II. Define the risk factors

A. Family history
B. Rare associations with other disease entities (RP, PXE)
C. Concurrent ocular disease may lead to accelerated visual loss

III. List the differential diagnosis

A. True papilledema with raised intracranial pressure
B. Other causes of pseudopapilledema
C. Other causes of optic disc swelling
D. Infiltrative optic neuropathy
E. Astrocytic hamartoma of tuberous sclerosis
F. Concurrent neurologic disease - optic disc drusen AND true causes of papilledema may co-exist

IV. Describe patient management in terms of treatment and follow-up

A. Describe the natural history, outcome and prognosis
 1. Slow progressive visual field constriction, or progressive nerve fiber layer defects with associated visual field defects
 2. Occasional occurrence of visual acuity loss
 3. May contribute to accelerated progression of other diseases associated with nerve fiber layer loss
B. Describe medical therapy options
1. None known to be effective for primary disease
2. Control other risk factors of concurrent disease with disease specific therapy
3. Lowering of intraocular pressure, when elevated, may be beneficial

C. Describe surgical therapy options
1. None known to be effective
2. Control other risk factors or concurrent disease with disease specific therapy

V. List the complications of treatment, their prevention and management
A. Not applicable

VI. Describe disease-related complications
A. Visual field constriction and loss, often in nerve fiber bundle defects
B. Peripapillary hemorrhages
C. Rare cases of peripapillary subretinal neovascular disease
D. Rare cases of secondary ischemic optic neuropathy in which disc drusen serve as a risk factor for NAION in otherwise healthy adults

VII. Describe appropriate patient instructions
A. Routine ophthalmologic examinations may include
1. Dilated funduscopic examination
2. Visual field testing
3. Ancillary testing to differentiate from other entities (See above)
4. The patient as their own advocate—Importance for patient to understand implication of papilledema versus pseudopapilledema, given this disease entity frequently presents confusion with other more serious neurologic diseases

Additional Resources
1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.
Optic atrophy

I. Describe the approach to establishing the diagnosis

A. Describe the etiology of this disease
 1. Axonal degeneration
 2. Retrograde degeneration is limited to the lateral geniculate typically without transsynaptic degeneration

B. Define the relevant aspects of epidemiology of the disease
 1. Variable based upon specific etiology

C. List the pertinent elements of the history
 1. Cadence of visual loss
 a. Gradually progressive - toxic, compressive, infiltrative
 b. Acute - ischemic, apoplexy
 c. Subacute - inflammatory (both infectious and non-infectious), Leber hereditary optic neuropathy
 2. Associated pain
 3. Associated disorders
 a. Vasculopathic diseases, multiple sclerosis, rheumatologic disease, malignancy, etc.
 4. Family history of visual loss (e.g. Leber hereditary optic neuropathy, Dominant optic atrophy)
 5. Drug history (e.g., ethambutol)
 6. Social history (e.g. diet, smoking, alcohol)

D. Describe pertinent clinical features
 1. Pale optic nerve generally associated with nerve fiber layer loss
 2. Optic nerve pallor out of proportion to cupping in most cases of non-glaucomatous optic atrophy
 3. May have decreased visual acuity, which doesn't necessarily correspond to degree of pallor
 4. Dyschromatopsia
 5. Visual field defect
 6. Relative afferent pupillary defect in unilateral or asymmetric cases
 7. Alteration in retinal vessels (possible arteriolar attenuation)

E. Describe appropriate testing and evaluation for establishing the etiology
 1. Imaging
 a. Magnetic resonance imaging (MRI) of the brain and orbits with contrast and fat suppression
 2. Serologic
 a. Tailor based upon age, history, clinical features, associated diseases
 3. Lumbar puncture
 4. Electrophysiology (e.g. visual evoked response, electroretinography)
 5. Optic nerve pallor alone does not establish the etiology as any chronic optic neuropathy will result in optic atrophy

II. List the differential diagnosis

A. Post-ischemic
B. Compressive
C. Post-inflammatory/demyelinating
Additional Resources

1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.
Multiple sclerosis (MS)

I. Describe the approach to establishing the diagnosis

A. Describe the etiology of this disease
 1. Immune-mediated demyelination of the central nervous system (CNS)
 2. Underlying etiology unknown

B. Define the relevant aspects of epidemiology of the disease
 1. Female predominance
 2. Age of onset 3rd to 5th decade
 3. Increased prevalence in northern latitudes
 a. Both genetic and environmental influence

C. List the pertinent elements of the history
 1. Acute onset of neurologic or neuro-ophthalmologic disturbance
 2. Most patients experience a relapsing-remitting clinical course with multiple episodes separated in time and anatomic location
 3. Pathologic disease burden of the CNS accumulates even in the absence of clinical activity (MRI studies)

D. Describe pertinent clinical features
 1. Neurologic dysfunction related to involved nerves/tracts with a myriad of presentations variably producing visual, motor, sensory, and autonomic disturbances
 2. Worsening symptoms with heat/raised body temperature is called Uhthoff symptom

E. Describe appropriate testing and evaluation for establishing the diagnosis
 1. Magnetic resonance imaging (MRI) of brain +/- spinal cord
 2. Administration of MRI contrast may improve sensitivity and provide info about the activity of the lesion
 3. Cerebrospinal fluid (CSF) (oligoclonal bands, CSF immunoglobulin G index, myelin basic protein)
 4. Electrophysiologic testing (visual evoked response, brainstem auditory evoked response, somatosensory evoked potential) in selected cases

II. Define the risk factors

A. Female higher risk than male
B. Family history of MS increases the risk

III. List the differential diagnosis

A. Stroke
B. Vasculitis, especially lupus
C. Neuro-infectious diseases
 1. Lyme disease
 2. Syphilis
D. Sarcoidosis
E. Neuromyelitis optica
F. MS or MS like episodes, including optic neuritis, may be precipitated by anti-tumor necrosis drugs
IV. Describe patient management in terms of treatment and follow-up

A. Acute neurologic disturbance
 1. IV corticosteroids +/- oral corticosteroid taper

B. Chronic therapy with immunomodulating agents to decrease exacerbations, plaque number, volume, and enhancement, and disability

C. Follow-up clinical exams and MRI as per discretion of neurologist

V. List the complications of treatment, their prevention, and management

A. Corticosteroids (See Systemic corticosteroids in neuro-ophthalmology)
 1. Uncommon acute side-effects as generally administered for only 2 weeks

B. Immunomodulating agents
 1. Some side effects include flu-like symptoms, fever, chills, and myalgias, macular edema (specific side-effect of fingolimod (Gilenya) requiring baseline and serial screening exams)

VI. Describe disease-related complications

A. Neurologic morbidity
B. Visual loss
C. Motility disturbance
D. Diplopia
E. Oscillopsia
F. Autonomic dysfunction
G. Late cognitive changes
H. Severe fatigue

VII. Describe appropriate patient instructions

A. Call physician for development of new neurological or visual deficits
B. Call physician for side effects of corticosteroids or immunomodulating agents

Additional Resources

1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.

Demyelinating optic neuritis

I. Describe the approach to establishing the diagnosis
 A. Describe the etiology of this disease
 1. Demyelination of the optic nerve
 B. Define the relevant aspects of epidemiology of the disease
 1. Typically patients are predominantly female in their 3rd to 5th decade
 C. List the pertinent elements of the history
 1. Acute or subacute, usually unilateral, visual loss
 2. Preceding or concurrent pain around the eye and/or on eye movement lasting a few days
 3. May have history of demyelinating symptoms or known diagnosis of multiple sclerosis (MS)
 D. Describe pertinent clinical features
 1. Decreased visual acuity
 2. Decreased color vision (particularly for red), often out of proportion to the visual acuity loss
 3. Visual field defect
 4. Afferent pupillary defect (if unilateral or asymmetric bilateral)
 5. Majority of cases do not have disc edema (retrobulbar form)
 6. Absence of vitreous cells
 7. Visual field deficits in the asymptomatic fellow eye
 8. Lack of prominent disc hemorrhages or severe disc edema is expected
 E. Describe appropriate diagnostic/laboratory testing
 1. Imaging of brain +/- orbits (MRI unless contraindicated)

II. Define the risk factors
 A. Female predominance
 B. History of MS

III. List the differential diagnosis
 A. Anterior ischemic optic neuropathy
 B. Maculopathy in the presence of a normal appearing fundus
 C. Infiltrative optic neuropathy
 D. Compressive optic neuropathy
 E. Leber hereditary optic neuropathy
 F. Infectious optic neuropathy i.e. syphilis
 G. Neuromyelitis optica
 1. Acute or subacute optic neuropathy in one or both eyes, which may be preceded or followed by within days, weeks or years a transverse or ascending myelopathy
 2. Primarily children and young adults, M=F
 3. Clinical features
May have a mild febrile illness days-weeks before symptom onset.

a. Rapid & severe vision loss, often bilateral

b. Pain in a minority of cases
d. Often severe visual field loss
e. Mild disc swelling in most patients
f. May have worse visual prognosis than in optic neuritis related to MS
g. Usually acute, severe spinal cord involvement, involving multiple spinal segments
h. Findings may overlap demyelinating optic neuritis
i. Recurrent disease or relapse may help clinically differentiate from idiopathic demyelinating optic neuritis

4. Diagnosis
 a. CSF usually shows an inflammatory process
 b. NMO antibodies

5. Treatment
 a. Corticosteroids
 b. IVIG
 c. Other chemical forms of immunosuppression

IV. Describe patient management in terms of treatment and follow-up
 A. Magnetic resonance imaging (MRI) scan
 1. Recommended in the absence of known diagnosis of MS
 2. Identify white matter abnormalities consistent with demyelinating neuritis
 3. No treatment versus IV corticosteroids and immunomodulating agents based upon MRI findings supporting a diagnosis of demyelinating disease
 a. IV corticosteroids may enhance rate of recovery but not visual outcome
 b. IV corticosteroids may prevent conversion to MS in the short term

 B. Referral to a multiple sclerosis specialist for the management of neurological disorders if abnormal MRI scan or consistent neurological examination and history

 C. Oral prednisone in standard doses contraindicated as primary therapy

 D. Abnormal MRI with brain lesions should prompt consideration immunomodulatory therapy

 E. Optic Neuritis Treatment Trial
 1. Patients were randomized to oral (PO) prednisone, intravenous (IV) followed by oral corticosteroids (CS) and oral placebo
 2. There was no long-term difference in visual function between the 3 groups
 3. The IV/PO group had a more rapid visual recovery versus placebo
 4. The PO group had an increased risk of recurrent optic neuritis

V. List the complications of treatment, their prevention and management
 A. Complications of corticosteroids (See Systemic corticosteroids in neuro-ophthalmology)

VI. Describe disease-related complications
 A. Failure to recover vision (uncommon)
B. Progression to MS (frequent if MS plaques on MRI brain at onset)

VII. Describe appropriate patient instructions

A. Medication instructions

B. Discussion of relationship to MS, risk factors, and possible immunomodulation

C. Referral to neurologist

Additional Resources

1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.
22. Cleary PA, Beck RW, Bourque LB. Visual symptoms after optic neuritis. Results from the Optic Neuritis

Hereditary optic neuropathy

I. Describe the approach to establishing the diagnosis

A. Describe the etiology of this disease.
 1. Autosomal Dominant Optic Atrophy (ADOA)
 a. Autosomal dominant transmission with variable penetrance and expressivity
 b. Sporadic cases are frequent
 2. Leber hereditary optic neuropathy (LHON)
 a. Mitochondrial transmission - most patients will have a mutation in the mitochondrial DNA (positions 11778, 14484, 3460)

B. Define the relevant aspects of epidemiology of the disease
 1. ADOA
 a. Males and females equally affected
 2. LHON
 a. Male predominance (90%)

C. List the pertinent elements of the history
 1. ADOA
 a. Slowly progressive, painless, bilateral (possibly asymmetric) visual loss beginning in first decade and stabilizing by fourth or fifth decade
 2. LHON
 a. Onset of visual loss is typically between 10-30 years of age
 b. Painless, acute to subacute loss of central vision, stabilizing after several months
 c. Second eye involvement is typically weeks to months after first eye
 d. Possible history of unexplained vision loss on maternal side of family

D. Describe pertinent clinical features
 1. ADOA
 a. Visual acuity loss can be variable, mild at onset but progresses to ~ 20/400
 b. Visual fields show central or centrocecal scotoma; reduced foveal thresholds
 c. Diffuse color vision loss
 d. Optic atrophy, characteristically temporal wedge-shaped pallor with loss of papillomacular bundle but may have diffuse pallor
 2. LHON
 a. Visual acuity loss can be variable: 20/20 to no light perception
 b. Visual fields show central or centrocecal scotoma
 c. Relative afferent pupillary defect if asymmetric disease or early unilateral disease
 d. Diffuse color vision loss
 e. Early funduscopic changes include optic disc hyperemia, pseudoedema, and peripapillary telangiectatic vessels but not unusual to be normal initially
 f. Late funduscopic changes include diffuse optic disc pallor, nonglaucomatous cupping, diffuse nerve-fiber layer loss

E. Describe appropriate testing and evaluation for establishing the diagnosis
 1. ADOA
a. Complete neuro-ophthalmologic examination (including visual field and color vision testing)
b. Inquiry regarding family history (examine family members if indicated)
c. Neuroimaging may be necessary if atypical presentation
d. Genetic testing for OPA1

2. LHON
 a. Complete neuro-ophthalmologic examination
 b. Inquiry regarding family history
 c. Neuroimaging may be necessary if atypical presentation
 d. Genetic testing for mitochondrial point mutation

II. Define the risk factors
 A. ADOA
 1. Positive family history
 B. LH
 1. Positive family history
 2. Presence of genetic mutation

III. List the differential diagnosis
 A. ADOA and LHON
 1. Compressive optic neuropathy
 2. Inflammatory optic neuropathy (i.e.; demyelinating disease)
 3. Ischemic optic neuropathy
 4. Toxic/metabolic optic neuropathy
 5. Optic nerve hypoplasia
 6. Functional visual loss

IV. Describe patient management in terms of treatment and follow-up
 A. Describe the natural history, outcome and prognosis
 1. ADOA
 a. Natural history is generally stable or slowly progressive over a number of years
 b. Loss of one or two lines of visual acuity per decade
 2. LHON
 a. Most experience visual loss of <20/200
 b. Majority of patients will have second eye involvement within one year
 c. Spontaneous improvement is uncommon
 B. Describe medical therapy options
 1. ADOA
 a. No proven medical therapy
 2. LHON
 a. Possible role of Idebenone therapy
C. Describe surgical therapy options
 1. ADOA and LHON
 a. No proven surgical therapy

V. List the complications of treatment, their prevention and management
 A. None

VI. Describe disease-related complications
 A. ADOA
 1. Bilateral visual loss
 B. LHON
 1. Bilateral visual loss
 2. Associated neurological disorders (movement disorders, dystonia, brainstem syndromes, encephalopathic episodes and multiple sclerosis-like disease)
 3. Cardiac conduction defects

VII. Describe appropriate patient instructions
 A. ADOA and LHON
 1. Genetic counseling
 2. LHON - recommend avoid smoking, 2nd degree smoke, and alcohol
 3. Low vision rehabilitation consultation/training

Additional Resources
Chiasmal syndromes

I. Describe the approach to establishing the diagnosis

A. Describe the etiology of this disease

1. Tumor
 a. Pituitary macroadenoma
 i. Tumor classification
 i) Secretory
 (i) Prolactinoma
 (ii) Growth hormone
 (a) Acromegaly
 (b) Gigantism
 (iii) Adrenal cortical tropic hormone (Cushing syndrome)
 (iv) Other, rare
 ii) Non-secretory
 ii. Special clinical syndromes
 i) Pituitary apoplexy
 (i) Hemorrhage into pituitary gland
 (ii) Occasional pre-existing pituitary tumor
 (iii) May be associated with pregnancy
 (iv) Acute visual loss, double vision, cranial neuropathy, and endocrine insufficiency
 (v) Visual and occasionally life-threatening emergency
 b. Meningioma
 i. Usually middle-aged women
 ii. May enlarge during pregnancy
 c. Craniopharyngioma
 i. Common in childhood with second peak in adults
 d. Glioma
 e. Rathke cleft cyst
 f. Germ cell tumors
 g. Metastatic disease
 h. Intrinsic chiasmal vascular lesions

2. Inflammatory
 a. Chiasmal neuritis
 b. Sarcoidosis
 c. Lymphocytic hypophysitis

3. Infectious - particularly in immunocompromised individuals

4. Vascular
 a. Aneurysm
b. Radiation chiasmopathy

5. Trauma—often with associated skull base fractures

6. Mechanical
 a. Enlarged IIIrd ventricle
 b. Iatrogenic—Surgical packing of sphenoid sinus
 c. Chiasmal herniation

B. List the pertinent elements of the history

1. Symptoms referable to visual dysfunction

2. Symptoms referable to endocrine disturbance
 a. Hyperfunction
 i. Amenorrhea
 ii. Galactorrhea
 iii. Change in hat, shoe and glove size in patients with acromegaly
 iv. Coarsening of facial features
 b. Hypofunction
 i. Loss of libido
 ii. Polydipsia/polyuria

3. Headache

4. Diplopia

5. Altered level of consciousness

C. Describe pertinent clinical features

1. Visual field loss with or without loss of visual acuity
 a. Bitemporal hemianopsia - may be isolated to superior or inferior temporal quadrants
 b. Junctional syndrome
 i. Central scotoma
 ii. Contralateral superior temporal defect
 c. Homonymous hemianopsia when optic tract involved

2. Associated symptoms
 a. Diplopia due to hemifield slip with dense bitemporal VF defect
 b. Diplopia related to associated single or multiple ocular motor neuropathy
 c. Signs of concurrent endocrine disturbance

D. Describe appropriate testing and evaluation for establishing the diagnosis

1. Screening for Endocrine dysfunction

2. Neuro-Imaging of chiasm and pituitary
 a. Magnetic resonance imaging (MRI)
 b. Computed tomography (CT)
 c. Angiography in selected cases

II. Define the risk factors

A. Pregnancy

1. Lymphocytic adenohypophysitis
2. Growth of pituitary tumor
3. Growth of parasellar meningioma

B. History of multiple sclerosis and other systemic inflammatory diseases
C. Change or withdrawal of hormonal medication

III. List the differential diagnosis

A. Pseudo-bitemporal visual field defect
 1. Anomalous optic disc
 a. Tilted disc
 b. High myopia
 c. Peripapillary coloboma
 2. Optic neuropathy with cecocentral field defects

B. Bilateral optic nerve disease causing cecocentral field defects may simulate bitemporal visual field loss
 1. Hereditary optic atrophy
 2. Toxic optic neuropathy (e.g. ethambutol)
 3. Nutritional optic neuropathy

IV. Describe patient management in terms of treatment and follow-up

A. Describe medical therapy options—depend on underlying cause, etiology but could include:
 1. Hormonal
 2. Immunosuppressive therapy

B. Describe surgical therapy options
 1. Transsphenoidal surgery
 2. Transcranial surgery

C. Radiation therapy
 1. Fractionated

V. List the complications of treatment, their prevention and management

A. Optic neuropathy, including iatrogenic damage to optic apparatus
B. Radiation retinopathy or optic neuropathy
 1. Limit fractionated and total dose to optic apparatus with conformal planning

C. Worsening chiasmal syndrome postoperatively
D. Cerebrospinal fluid leak spontaneously or after transsphenoidal surgery
E. Chiasmal prolapse after surgery or medical therapy
 1. May respond to surgical repair

F. Hypothalamic-pituitary axis failure

VI. Describe disease-related complications

A. Progressive visual loss
B. Optic atrophy
C. Endocrine disturbance
D. Hydrocephalus
E. Hypothalamic-pituitary disorders

VII. Describe appropriate patient instructions
A. Report worsening of vision
B. Report new visual field defects
C. Periodic afferent system assessment
D. Pituitary endocrine status
E. Routine imaging follow-up

Additional Resources
1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.
Disorders of the retrogeniculate pathway

I. Describe the approach to establishing the diagnosis

A. Describe the etiology of this disease

1. In the retrogeniculate structures, crossed nasal fibers from contralateral eye (temporal visual field) and uncrossed temporal fibers (nasal field) are grouped together.

2. Lesions of these pathways nearly always produce homonymous field cuts that respect a vertical midline. Exceptions are discussed below.

3. Anatomy of optic radiations of geniculocalcarine tract

 a. Parietal Superior fibers: Some fibers from lateral geniculate body course more directly posterior through the parietal lobe to ipsilateral calcarine fissure. These fibers represent contralateral inferior visual field.

 b. Temporal Inferior fibers: Some fibers from lateral geniculate course anteriorly in Meyer loop around the temporal horn of the lateral ventricle before turning posteriorly to reach the ipsilateral calcarine fissure. These fibers correspond to contralateral superior visual field.

4. Anatomy of occipital lobe

 a. Calcarine cortex: Located on the poles and medial surface of the occipital lobes containing typically homonymous, crossed, processed, representations from fibers with both a horizontal orientation and vertical orientation due to upper/lower/left/right orientation. Left visual field is represented in right calcarine bank. Upper visual field is represented in lower calcarine bank. Lower visual field is represented in upper calcarine bank.

 i. Macular fibers heavily represented
 ii. Central macular field represented posteriorly
 iii. Peripheral field represented more anteriorly
 iv. Anterior monocular temporal crescent with monocular temporal representation of crossed nasal fibers (temporal field)

B. Pathophysiology

1. Vascular

 a. Territorial infarcts of arterial vessels
 i. Middle cerebral artery watersheds with PCA at posterior occipital tip
 ii. Posterior cerebral artery

 b. Thromboembolic

 c. Hemorrhagic events

 d. Vasculitic disease

 e. Arteriovenous malformation

2. Neoplastic

 a. Primary
 b. Metastatic

3. Trauma

 a. Surgically iatrogenic
 b. Closed head injury (shearing)
 c. Penetrating trauma
4. Inflammatory
 a. Demyelinating disease
 b. Infectious

5. Other
 a. Developmental
 i. Cortical dysplasia
 ii. Sturge Weber
 b. Metabolic
 c. Dementing illnesses
 i. Alzheimer
 ii. Creutzfeldt-Jakob disease (CJD)

C. Define the relevant aspects of epidemiology of the disease
 1. Vascular disease
 a. Increasing age
 b. Atherosclerosis
 2. Inflammatory disease
 a. Young patients
 b. Autoimmune pathology
 3. Neoplasia
 a. Varies with tissue type

D. List the pertinent elements of the history
 1. Loss of peripheral vision, descriptions of which may be vague and represent visual field loss to one side that is not recognized by the patient

E. Describe pertinent clinical features
 1. Retrogeniculate lesions in general:
 a. Variations of homonymous hemianopsia
 i. Complete homonymous
 ii. Congruous or incongruous incomplete hemianopia
 iii. Homonymous with central sparing
 iv. Homonymous central scotoma
 v. Non-homonymous monocular crescent
 vi. Reciprocal incongruous homonymous sparing temporal crescent
 b. Preserved central acuity unless extensive bilateral lesions
 c. Variations in congruity as above
 d. Absent optic atrophy unless insult very early in development (congenital/intrauterine)
 e. Occasional color vision loss, especially when bilateral
 f. Associated neurologic disorders
 i. Hemiparesis
 ii. Hemisensory loss
 iii. Pursuit deficit
 iv. Seizures
 2. Temporal radiations
a. Homonymous hemianopia
i. Typically, superior (pie in the sky)
ii. May be homonymous congruous or homonymous partial incongruous
b. Temporal (Meyer loop)
i. Superior visual field defect ("pie in sky")
c. Relative incongruity
i. Associated symptoms
 i) Partial complex seizures (uncinate fits)
 ii) Auditory symptoms
 iii) Olfactory seizures
 iv) Visual hallucinations
ii. Etiology
 i) Trauma (include surgical)
 ii) Tumor
 iii) Infarct
 iv) Arteriovenous malformation
d. Parietal
i. Inferior visual field defect
ii. Associated symptoms
 i) Pursuit deficit
 (i) Ipsilateral
 (ii) Optokinetic nystagmus (OKN) asymmetry (Cogan rule)
 ii) Visual neglect
 iii) Numbness
 iv) Visual spatial abnormalities
iii. Etiology (vascular>mass)
 i) Infarct
 ii) Tumor
 iii) Inflammatory
3. Calcarine cortex
a. May spare fixation
b. Homonymous with central sparing
i. Dual blood supply, with sparing due to MCA predominance over PCA
c. Often highly congruous
d. May also preserve the horizontal meridian, relative to the upper or lower calcarine bank
e. Anterior temporal lesions may cause a monocular contralateral temporal crescent of field loss, or homonymous contralateral hemianopia sparing the temporal crescent of contralateral eye

F. Describe appropriate laboratory testing for establishing the diagnosis
1. Psychophysical testing
 a. Quantitative static perimetry
 b. Other forms of perimetry
2. Imaging
a. Computed tomography
b. Magnetic resonance imaging
c. Angiography

II. Define the risk factors
A. Vasculopathic risk factors
 1. Diabetes mellitus
 2. Systemic hypertension
 3. Elevated cholesterol
 4. Elevated triglycerides
B. Immunosuppression
C. Systemic inflammatory disease
D. Infectious diseases
E. History of malignancy with metastatic potential

III. List the differential diagnosis
A. Bilateral optic neuropathy
B. Bilateral retinal disease
C. Optic tract or geniculate disease

IV. Describe patient management in terms of treatment and follow-up
A. Treat underlying condition
B. Vision rehabilitation, low vision aids, evaluation of associated cognitive impairment, discuss compensatory adaptations
C. Evaluate driving abilities

V. List the complications of treatment, their prevention and management
A. Worsening visual field defect
B. Other neurologic symptoms

VI. Describe disease-related complications
A. Progressive visual field defect
B. Development of other neurological symptoms

VII. Describe appropriate patient instructions
A. Follow visual fields
B. Periodic imaging studies as indicated

Additional Resources
Disorders of the lateral geniculate and optic tract

I. Describe the approach to establishing the diagnosis

A. Describe the etiology of this disease

1. Anatomic structure relates to clinical findings
 a. Lateral geniculate and optic tracts relay crossed and uncrossed visual sensory and pupillary afferent impulses which project from retinal ganglion cell to a variety of pretectal and tectal nuclei
 b. The geniculate has a complex laminar structure, and both the tract and geniculate preserve a retinotopic anatomy, the organization of which becomes increasingly more congruous as fibers course from retina to the layered geniculate, and more posteriorly to striate cortex. This arrangement leads to a variety of homonymous field cuts in diseases of these structures that may have varying congruity

2. Vascular supply
 a. Lateral geniculate receives dual supply from anterior and posterior circulations of the brain, the anterior and lateral choroidal arteries respectively.
 b. Optic tract blood supply is primarily from branches of the internal carotid artery

3. Pathophysiology
 a. Vascular
 b. Compressive tumor (primary intrinsic, secondary compressive)
 c. Demyelination
 d. Trauma
 e. Other rare causes

B. Define the relevant aspects of epidemiology of the disease

1. Vascular disease is the most common cause of geniculate disorders, albeit extremely rare
 a. Increasing age
 b. Atherosclerosis

2. Inflammatory disease
 a. Young patients
 b. Autoimmune pathology

3. Damage to the optic tract most commonly results from mass lesions such as aneurysms and neoplasia but may occur from trauma and demyelination as well. Defects may not be pure and can occur in posteriorly located pituitary lesions
 a. Varies with tissue type and age of patient

C. List the pertinent elements of the history

1. Blurry vision
2. Loss of peripheral vision
3. Abnormal color perception
4. Neurologic complaints referable to primary lesion and other structures involved

D. Describe pertinent clinical features

1. Optic tract clinical features
 a. Homonymous hemianopsia, often incongruous, may be complete or wedge shaped defects, contralateral to the involved optic tract
b. Preserved central acuity

c. Variations in congruity

d. A particular pattern of bilateral optic atrophy ("bowtie atrophy"): A band of atrophy at the horizontal nasal and temporal pole to the optic nerve contralateral to the lesion and (variable) atrophy at the superior and inferior poles of the nerve ipsilateral to the lesion

e. Contralateral (or less commonly ipsilateral) afferent pupillary defect, dependent on completeness of lesion

f. Variable associated neurologic disorders

2. Lateral geniculate clinical features

a. Classically will display bilateral sectoral optic atrophy

b. Wedge shaped or other unusual shaped homonymous hemianopia which is variably incongruous

c. Because the lateral geniculate and optic tract share blood supply, the syndromes may have significant overlap

E. Appropriate testing for establishing the diagnosis

1. Neuroradiologic imaging when appropriate

2. Ancillary testing directed towards underlying disease process

II. List the differential diagnosis

A. Bilateral optic neuropathy

B. Retrogeniculate cortical disease

III. Describe patient management in terms of treatment and follow-up

A. Treat underlying condition:

B. Vision rehabilitation, low vision aids, evaluation of associated cognitive impairment

C. Evaluate driving abilities

IV. List the complications of treatment, their prevention and management

A. Worsening visual field defect

B. Other neurologic symptoms

V. Describe disease-related complications

A. Progressive visual field defect

B. Development of other neurological symptoms

VI. Describe appropriate patient instructions

A. Follow visual fields

B. Periodic imaging studies as indicated

Additional Resources

1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.

Internuclear ophthalmoplegia (INO)

I. Describe the approach to establishing the diagnosis

A. Describe the etiology of this disease
 1. Pathology affecting the medial longitudinal fasciculus (MLF), which connects the contralateral 6th nerve nucleus in the pons to the ipsilateral medial rectus subnucleus (of the 3rd nerve nucleus) in the midbrain
 2. Most common causes
 a. Demyelinating disease (in young adults and adolescents)
 b. Stroke (in older adults)

B. List the pertinent elements of the history
 1. Double vision that resolves with occlusion of either eye
 2. May be maximal at onset or gradually progressive, depending on etiology
 3. Symptoms may be constant or intermittent
 4. Double vision principally horizontal, but may have a vertical component secondary to accompanying skew deviation
 5. Double vision may be worse or only occur in contralateral gaze or when making saccades to the contralateral side
 6. Pertinent medical history
 a. Diabetes mellitus
 b. Systemic hypertension
 c. Cerebrovascular disease
 d. Multiple sclerosis
 7. Other neurological symptoms/history

C. Define the relevant aspects of epidemiology of this disease
 1. Most commonly in adults (often demyelinating in younger adults and ischemic in older adults)
 2. May be seen in children

D. Describe pertinent clinical features
 1. Impaired adduction or slowed adducting saccades of affected eye
 2. Side of INO named for the side of the adduction deficit (on the same side as the affected MLF), i.e., right INO = right eye adduction deficit
 3. Misalignment of eyes (exotropia) most pronounced on attempted gaze to the contralateral side
 4. Abducting nystagmus may be observed in the contralateral eye
 5. May be associated with skew deviation
 6. May be associated with ipsilateral gaze palsy: "One-and-a-half syndrome"
 a. Caused by pontine abnormality that is large enough to involve the MLF and 6th nerve nucleus on the same side, resulting in ipsilateral horizontal gaze palsy and INO with only contralateral abduction spared
 7. May be bilateral with large-angle exotropia (Wall-Eyed Bilateral Inter Nuclear Ophthalmoplegia (WEBINO syndrome))
 8. Negative forced ductions
 9. Convergence may be preserved

E. Describe appropriate testing and evaluation for establishing the diagnosis
1. Magnetic resonance imaging (MRI) with attention to the midbrain and pons assessing for pathology affecting the medial longitudinal fasciculus

II. Define the risk factors
 A. Cerebrovascular disease
 B. Multiple sclerosis
 C. Vasculopathic risk factors
 1. Diabetes mellitus
 2. Systemic hypertension
 3. Elevated cholesterol
 4. Elevated triglycerides

III. List the differential diagnosis
 A. Myasthenia gravis (i.e. pseudo-INO)
 B. Incomplete oculomotor nerve palsy
 C. Restrictive process
 1. Infiltrative myopathies
 2. Myositis
 3. Orbital fracture with EOM entrapment
 4. Orbital mass
 D. Miller Fisher variant of Guillain-Barré

Additional Resources
1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.
Restrictive strabismus and diplopia

I. Describe the approach to establishing the diagnosis

A. Describe the etiology of this disease
1. Tethered tissue of check ligaments, tendons, intermuscular septum, and/or conjunctiva
2. Brown syndrome (restriction of supraduction in adduction)
 a. Congenital: shortened superior oblique tendon
 b. Acquired: damage or scarring of the trochlea
 i. Can be seen in patients with rheumatoid arthritis, orbital inflammation, iatrogenic, and trauma
3. Acute or long standing orbital disease
4. Long standing non-restrictive strabismus may become restrictive strabismus
5. Space occupying orbital lesion
6. Orbital fractures with entrapment of extraocular muscle or its fascial attachments in the adjacent orbital fat
7. Iatrogenic causes (e.g. sinus surgery, retrobulbar and peribulbar injection)
8. Intramuscular infiltration (e.g., inflammatory or neoplastic [by adjacent or metastatic spread])

B. Define the relevant aspects of epidemiology of this disease
1. Varies by cause

C. List the pertinent elements of the history
1. Double vision that resolves with occlusion of either eye
2. May be maximal at onset or gradually progressive, depending on etiology
3. May be congenital
4. Symptoms may be constant or intermittent
5. Double vision may be horizontal, vertical, or oblique
6. Pertinent medical history
 a. Thyroid disease
 b. Orbital trauma
 c. Past orbital inflammation
 d. Previous ocular or orbital surgery
 e. Retrobulbar injection
 f. Family history of eye movement disorders
 g. History of malignancy

D. Describe pertinent clinical features
1. Limitation of ductions
2. Incomitant deviations
3. Positive forced ductions
4. May have gaze evoked discomfort
5. Primary versus secondary deviations
 a. Alternate prism cover testing may produce the smallest prism deviation when the prism is placed before the more restricted eye (primary deviation); vs the less restricted or normal eye (secondary deviation)
E. Describe appropriate testing and evaluation for establishing the diagnosis

1. Sensorimotor examination
 a. Duction (monocular) and/or version (binocular) testing
 b. Measure ocular alignment in multiple fields of gaze

2. Gaze tonometry
 a. Eye movement opposite the direction of action of restricted muscle may evoke elevation of IOP

3. Forced duction testing

4. Forced generation testing to differentiate from paralytic strabismus

5. Orbital imaging is employed in many cases
 a. Computed tomography
 b. Magnetic resonance imaging
 c. Orbital ultrasound

II. Define the risk factors

A. Thyroid disease

B. Orbital trauma

C. Orbital inflammation

D. Orbital mass

E. Orbital or sinus surgery

F. Retrobulbar or peribulbar injection

G. History of malignancy with metastatic potential

III. List the differential diagnosis

A. Paretic condition (nuclear, infranuclear, or supranuclear)

B. Chronic progressive external ophthalmoplegia (CPEO)
 1. Kearns-Sayre syndrome
 2. Oculopharyngeal muscular dystrophy (OPMD)

C. Myasthenia gravis

IV. Describe patient management in terms of treatment and follow-up

A. Describe medical therapy options
 1. Monocular occlusion (patch or tape over lens)
 2. Prism therapy
 3. Pharmacologic therapy
 a. Steroids if acute inflammation (e.g. myositis)
 b. Chemotherapy for malignancy
 4. Radiation therapy (e.g. lymphoma)
 5. Treatment of underlying medical condition (e.g. hyperthyroidism)

B. Describe surgical therapy options
 1. Strabismus surgery
2. Correction of underlying disorder

V. List the complications of treatment, their prevention and management

A. Medical therapy complications
 1. Complications from steroids, radiation or chemotherapy

B. Surgical therapy complications
 1. Eyelid deformity
 2. Ocular misalignment
 3. Extraocular muscle (EOM) damage/restrictive strabismus/neuropathic damage
 4. Postoperative or delayed visual loss/central retinal artery occlusion
 5. Hypoesthesia
 6. Abnormal pupil/accommodation loss
 7. Orbital/ocular ischemia, compartment syndrome
 8. Orbital cellulitis

VI. Describe disease-related complications

A. Diplopia
B. Loss of binocularity
C. Disease specific complications

VII. Describe appropriate patient instructions

A. Report worsening or change in symptoms
B. Monocular occlusion to reduce diplopia
C. Report change in globe position (proptosis)
D. Report numbness or pain

Additional Resources

1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.
Nuclear lesions of the oculomotor nerves

I. Describe the approach to establishing the diagnosis
 A. Define the relevant aspects of epidemiology of this disease
 1. Most commonly in adults, but also seen in children
 B. List the pertinent elements of the history
 1. Generally binocular oblique diplopia
 2. May have bilateral ptosis (because of innervation of the bilateral levator palpebrae muscles from a single central caudal subnucleus)
 3. May be maximal at onset or gradually progressive, depending on etiology
 4. Pertinent medical history
 a. Vascular risk factors
 i. Diabetes mellitus
 ii. Systemic hypertension
 iii. Elevated cholesterol
 iv. Elevated triglycerides
 b. Multiple sclerosis
 c. Brain tumor
 d. History of malignancy
 e. Systemic or central nervous system (CNS) infection or vasculitis
 f. Other neurological symptoms and history
 C. Describe pertinent clinical features
 1. Involvement of all subnuclei from nuclear 3rd nerve palsy will result in bilateral ptosis, underaction of contralateral superior rectus, in addition to paresis of all extraocular muscles (ipsilateral medial rectus, inferior rectus, and inferior oblique) innervated by the ipsilateral oculomotor nerve and may also result in an ipsilateral mydriasis, poorly-reactive pupil. Additionally, there will often be involvement of surrounding midbrain structures if the lesion is extensive:
 a. Involvement of cerebral peduncle: contralateral hemiparesis (Weber syndrome)
 b. Involvement of red nucleus and substantia nigra: contralateral ataxia with or without tremor (Benedikt syndrome)
 2. Ipsilateral limitation of infraduction, supraduction, and adduction in the affected eye, contralateral supraduction deficit, and bilateral ptosis if complete, +/- pupillary involvement
 3. Incomplete involvement of the various subnuclei may spare any of the innervated ipsilateral extraocular muscles, the contralateral superior rectus, the levator palpebrae, and the pupil
 D. Describe appropriate testing and evaluation for establishing the diagnosis
 1. Magnetic resonance imaging (MRI) with attention to the midbrain
 2. CT if MRI contraindicated

II. Define the risk factors
 A. Multiple sclerosis
 B. Vascular risk factors
1. Diabetes mellitus
2. Systemic hypertension
3. Elevated cholesterol
4. Elevated triglycerides

III. List the differential diagnosis
 A. Myasthenia gravis
 B. Peripheral third nerve palsy

Additional Resources
 1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.
Isolated oculomotor nerve lesion

I. Describe the approach to establishing the diagnosis

A. Define the relevant aspects of epidemiology of this disease

1. Most commonly in adults, but also seen in children

B. List the pertinent elements of the history

1. Generally binocular oblique diplopia (may be vertical or horizontal; typically changes with gaze)
2. Ptosis of the ipsilateral upper eyelid
3. May be painful
4. May be maximal at onset or gradually progressive, depending on etiology
5. Pertinent medical history
 a. Vasculopathic disease risk factors
 i. Diabetes mellitus
 ii. Systemic hypertension
 iii. Elevated cholesterol
 iv. Elevated triglycerides
 b. History of aneurysm
 c. Recent head trauma
 d. Multiple sclerosis
 e. Migraine (only relevant in children or in adults with history of ophthalmoplegic migraine when younger)
 f. Recent viral infection or vaccination (relevant only in children)
 g. Other neurological symptoms and history

C. Describe pertinent clinical features

1. Ipsilateral mydriasis and decreased pupillary reactivity to light and accommodation
 a. Common in patients with aneurysmal cranial nerve (CN) III palsy
 b. Minority of patients with microvascular CN III palsy
2. Paresis of some or all of the EOMs innervated by the oculomotor nerve (medial, superior, and inferior recti and inferior oblique)
3. Ptosis secondary to levator palpebrae involvement
4. Aberrant regeneration (never in microvascular nerve palsy)(See Aberrant regeneration of the third cranial nerve)
 a. May affect eyelid, pupil and/or extra ocular muscles

D. Describe appropriate testing and evaluation for establishing the diagnosis

1. Observation for 3-4 months is appropriate in adults > 50 years only if:
 a. No pupil involvement
 b. Complete external ophthalmoplegia of the superior, medial, and inferior rectus and inferior oblique muscles and complete ptosis
 c. No history of malignancies with metastatic potential

2. Imaging is indicated in the following cases: patients that do not fit into the above category; or in any patient with pupillary involvement; or in patients with history of malignancy with metastatic potential; or in patients with aberrant regeneration of the third cranial nerve that is not traumatic or compressive in etiology; or in
patients in whom the diagnosis is unclear

a. Magnetic resonance imaging (MRI) and magnetic resonance angiography (MRA) or computed tomography angiography (CTA)

b. Aberrant regeneration of the 3rd cranial nerve in absence of a history of trauma or aneurysm demands imaging to rule out compressive lesion

c. If MRI and MRA or CTA normal, and still high index of suspicion for aneurysm:
 i. Cerebral angiogram
 i) Arteriography is almost never indicated in children less than 10 years old

d. If MRI and MRA or CTA normal, and other signs and symptoms are suggestive of infection, infiltration, or inflammation:
 i. Lumbar puncture (check CSF cytology)

e. If palsy does not resolve in 3-4 months or worsens beyond the first 2 weeks following onset:
 i. Repeat imaging
 ii. Consider lumbar puncture

f. In patients with signs and/or symptoms suggestive of vasculitis or giant cell arteritis, obtain serological evaluation including:
 i. Erythrocyte sedimentation rate
 ii. C-reactive protein
 iii. Complete blood count and platelets
 iv. Additional serologic work up as indicated (e.g. ACE, ANA, etc.)

II. Define the risk factors

A. Vasculopathic risk factors
 1. Diabetes mellitus
 2. Hypertension
 3. Elevated cholesterol
 4. Elevated triglycerides

B. Systemic disease known to be associated with the formation of aneurysms

C. History of malignancy with metastatic potential

D. History of head trauma

III. List the differential diagnosis

A. Myasthenia gravis

IV. Describe appropriate patient instructions

A. Call for worsening diplopia or additional neurological signs and/or symptoms

Additional Resources

Aberrant regeneration of the third cranial nerve

I. Describe the approach to establishing the diagnosis

A. List the pertinent elements of the history
 1. May or may not have previous history of cranial nerve (CN) III palsy
 2. Pertinent medical history
 a. History of traumatic 3rd nerve palsy
 b. History of aneurysm
 c. History of cavernous sinus tumor
 3. Pertinent family history
 a. Family history of cerebral aneurysm
 4. Other neurological symptoms and history

B. Define the relevant aspects of epidemiology of this disease
 1. Most commonly in adults, but also seen in children

C. Describe pertinent clinical features
 1. Eyelid synkinesis: eyelid elevation/ retraction upon attempted adduction or depression
 2. Pupillary synkinesis: pupillary constriction upon attempted elevation, adduction, or depression
 3. Never occurs in microvascular nerve palsy
 4. Persistent vertical gaze limitation caused by co-contraction of the superior and inferior recti
 5. Features of aberrant regeneration of CN III without a history of acute CN III palsy is known as primary aberrant regeneration and suggests a slowly expanding mass, compressing CN III. Common etiologies include
 a. Cavernous sinus meningioma or cavernous carotid aneurysm

D. Describe appropriate testing and evaluation for establishing the diagnosis
 1. Magnetic resonance imaging (MRI) with contrast
 a. Particular attention should be paid to the cavernous sinus to evaluate for mass lesion (e.g. aneurysm, meningioma)
 2. If the MRI does not reveal the cause, consider magnetic resonance angiography (MRA), computed tomographic angiography (CTA), or cerebral angiography

II. Define the risk factors

A. Previous non-ischemic CN III palsy
B. Head trauma
C. Cerebral aneurysm
D. Previous intracranial surgery
E. Cavernous sinus mass

III. List the differential diagnosis

A. Mimickers of aberrant regeneration
1. Duane syndrome: upshoot or downshoot of eye in adduction
2. Thyroid eye disease: upper eyelid retraction

Additional Resources
1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.
Abducens nuclear lesion

I. Describe the approach to establishing the diagnosis

A. List the pertinent elements of the history
 1. Inability to look toward the side of the lesion (ipsilateral gaze palsy), so may not have diplopia
 2. May also have ipsilateral facial weakness
 3. May be maximal at onset or gradually progressive depending on etiology
 4. Pertinent medical history
 a. Vasculopathic risk factors
 i. Diabetes mellitus
 ii. Systemic hypertension
 iii. Elevated cholesterol
 iv. Elevated triglycerides
 b. Multiple sclerosis
 c. Cerebrovascular disease
 5. Other neurological symptoms and history
 a. Facial weakness
 b. Change in facial sensation

B. Define the relevant aspects of epidemiology of this disease
 1. Most commonly in adults, but also seen in children
 2. May be congenital

C. Describe pertinent clinical features
 1. Gaze palsy ipsilateral to the side of the lesion
 2. May have ipsilateral facial weakness and/or changes in facial sensation
 3. Contralateral eye adduction is preserved with convergence
 4. Patient may have a head turn toward the side of the lesion
 5. Vestibulo-ocular reflexes (VOR) (Doll's head maneuver) will not overcome the gaze palsy
 6. Large lesions can result in complete loss of horizontal gaze with preservation of voluntary and involuntary vertical gaze if bilateral CN VI nucleus damage; or a one-and-a-half syndrome if involvement of adjacent ipsilateral medial longitudinal fasciculus (i.e. ipsilateral horizontal gaze palsy and ipsilateral internuclear ophthalmoplegia with only contralateral eye abduction spared)

D. Describe appropriate testing and evaluation for establishing the diagnosis
 1. Magnetic resonance imaging with attention to the brainstem for pontine pathology

II. Define the risk factors

A. Cerebrovascular disease
B. Vasculopathic risk factors
 1. Diabetes mellitus
 2. Systemic hypertension
 3. Elevated cholesterol
4. Elevated triglycerides
C. Multiple sclerosis

III. List the differential diagnosis
A. Miller Fisher variant of Guillain-Barré
B. Myasthenia gravis
C. Wernicke encephalopathy

Additional Resources
1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.
Abducens nerve palsy

I. Describe the approach to establishing the diagnosis

A. List the pertinent elements of the history

1. Binocular horizontal diplopia worse in ipsilateral gaze
2. May be maximal at onset or gradually progressive, depending on etiology
3. Pertinent medical history
 a. Vasculopathic risk factors
 i. Diabetes mellitus
 ii. Systemic hypertension
 iii. Elevated cholesterol
 iv. Elevated triglycerides
 b. Multiple sclerosis
 c. Elevated or low intracranial pressure
 d. Meningitis
 e. History of malignancies
 f. History of head trauma
 g. Symptoms of GCA
4. Other neurological symptoms and history
 a. Facial weakness
 b. Loss of facial sensation
 c. Impairment of hearing or balance

B. Define the relevant aspects of epidemiology of this disease

1. Most commonly in adults, but also seen in children
2. Most common isolated ocular motor palsy

C. Describe pertinent clinical features

1. Limitation of abduction ipsilateral to the side of the lesion
2. Esotropia that is greatest with ipsilateral gaze
3. Patient may have a head turn toward the side of the lesion
4. Vestibulo-ocular reflexes (VOR) (Doll's head maneuver) will not overcome the palsy
5. In an isolated cranial nerve (CN) VI palsy, all other cranial nerves must be normal
6. Concurrent impairment of CN III, IV, and/or V with CN II suggests an orbital apex lesion
7. Concurrent impairment of only CN III, IV, and/or V (without CN II involvement) suggests cavernous sinus lesion
8. Concurrent ipsilateral Horner syndrome suggests lesion of cavernous sinus (less often of brainstem)
9. With cavernous sinus disease, the 6th cranial nerve is usually the first involved because it is the only cranial nerve not protected by the dural wall of the cavernous sinus
10. Concurrent impairment of cranial nerves V, VII, and VIII suggests a tumor of the cerebellopontine angle (e.g. acoustic neuroma, meningioma) or infiltration of the petrous bone of the temporal bone (e.g. nasopharyngeal carcinoma, mastoiditis)
11. Concurrent papilledema from dural venous sinus thrombosis
Concurrent ipsilateral facial nerve paresis, localizes to genu of facial nerve (intra-axial pontine lesion).

Describe appropriate testing and evaluation for establishing the diagnosis

1. If palsy is truly isolated (i.e. no other cranial neuropathies; no accompanying neurologic signs/symptoms), observation for 3-4 months is appropriate in adults > 50 years of age who have a new onset unilateral VIth nerve palsy without progression beyond the first 2 weeks following onset and with no history of malignancies with metastatic potential (e.g. breast, lung, prostate, lymphoma): presumed microvascular
 a. Assess for vasculopathic risk factors (blood pressure, HgbA1c, glucose, lipid profile)

2. For patients with systemic symptoms suggestive of giant cell arteritis, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and CBC with platelets may be indicated

3. Magnetic resonance imaging (MRI), +/- lumbar puncture, +/- serologic testing (e.g. ACE, ANA, RPR, FTA, Lyme) for all patients with accompanying neurologic signs/symptoms, all patients younger than 50 years old, patients with progressive motility deficit beyond 2 weeks following onset, patients with persistent paresis > 3-4 months, and any patient with history of malignancies with metastatic potential (e.g. breast, lung, prostate, lymphoma)

II. Define the risk factors

A. Vasculopathic risk factors
 1. Diabetes mellitus
 2. Systemic hypertension
 3. Elevated cholesterol
 4. Elevated triglycerides

B. Multiple sclerosis

C. Head trauma

D. Malignancy with metastatic potential

E. Elevated or low intracranial pressure

III. List the differential diagnosis

A. Neural causes
 1. Duane syndrome
 2. Miller Fisher variant of Guillain-Barré

B. Myopathic causes
 1. Giant cell arteritis (can also be neurogenic)
 2. Restrictive myopathy (e.g. thyroid eye disease (Graves ophthalmopathy, thyroid orbitopathy), trauma, fracture)
 3. Extraocular muscle infiltration and orbital myositis
 4. Convergence spasm

C. Neuro-muscular Junction Disease
 1. Myasthenia gravis

IV. Describe patient management in terms of medical treatment and follow up

A. Management depends upon the underlying condition

B. Lesions due to small vessel ischemia will almost always completely resolve spontaneously within approximately 6-12 weeks without specific treatment
 1. These patients should be referred to their primary care physician for vasculopathic risk factor assessment
V. Describe appropriate patient instructions

A. Call for worsening diplopia or additional neurological signs and/or symptoms

Additional Resources

1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.
Trochlear nerve palsy

I. Describe the approach to establishing the diagnosis

A. List the pertinent elements of the history
1. Binocular vertical or oblique diplopia
2. May describe torsional diplopia
3. May be painful
4. May be maximal at onset, gradually progressive, or intermittent, depending on etiology
5. Pertinent medical history
 a. Vasculopathic risk factors
 i. Diabetes mellitus
 ii. Systemic hypertension
 iii. Elevated cholesterol
 iv. Elevated triglycerides
 b. Multiple sclerosis
 c. Head trauma
 d. History of head tilt
6. Other neurological symptoms and history

B. Define the relevant aspects of epidemiology of this disease
1. Most commonly in adults, but also seen in children

C. Describe pertinent clinical features
1. Hypertropia that increases when the hypertropic eye is in adduction
2. Hypertropia that increases when the patient's head is tilted toward the hypertropic eye
3. Patient may have a head tilt away from the hypertropic eye
4. Patient may have a head turn away from the hypertropic eye
5. Excyclotorsion—measured with double Maddox rods -- (if > 10 degrees, indicates bilateral 4th nerve palsies)
6. If caused by a nuclear lesion, the involved eye will be contralateral to the side of the lesion, because of the external decussation of the 4th nerve fascicles
7. If caused by a peripheral nerve lesion, the hypertropia will be ipsilateral to the side of the lesion
8. If caused by a nuclear lesion, there may be an associated Horner syndrome contralateral to the involved eye (i.e. ipsilateral to the lesion) because of the proximity of the descending 1st order sympathetic pathway fibers
9. Bilateral traumatic cranial nerve (CN) IV palsy
 a. Small or no hypertropia in primary gaze
 b. Right hypertropia in left gaze and left hypertropia in right gaze (alternating hypertropia)
 c. Excyclotorsion of >10 degrees
 d. Marked torsional diplopia in downgaze
10. May be congenital (increased vertical fusional amplitudes)

D. Describe appropriate testing and evaluation for establishing the diagnosis
1. Review of old photographs for evidence of previous head tilt
 a. Implies congenital or longstanding CN IV palsy
2. Assess for presence of spontaneous head tilt on clinical exam
3. Measurement of vertical fusional amplitudes
 a. Patients with congenital CN IV palsy may have large vertical fusional amplitudes
4. Observation of adults > 50 years old with new onset isolated CN IV palsy for 3-4 months for presumed microvascular origin is appropriate if patient exhibits
 a. Normal vertical fusional amplitudes
 b. No progression beyond 2 weeks following onset
 c. No history of malignancy of metastatic potential
5. Assessment for vasculopathic risk factors if felt to be microvascular in origin (blood pressure, HgbA1c, glucose, lipid profile)
6. Observation for presumed decompensated congenital or longstanding CN IV palsy is appropriate in patients with evidence of longstanding head tilt or increased vertical fusional amplitudes
7. Magnetic resonance imaging (MRI) for non-trauma related cases that do not fit into the above categories

II. Define the risk factors
 A. Head trauma
 B. Vasculopathic risk factors
 1. Diabetes mellitus
 2. Systemic hypertension
 3. Elevated cholesterol
 4. Elevated triglycerides
 C. Multiple sclerosis (rare)

III. List the differential diagnosis
 A. Skew deviation
 B. Myasthenia gravis
 C. Thyroid eye disease

IV. Describe patient management in terms of medical treatment and follow up
 A. Management depends upon the underlying condition
 B. Patching or fogging of one eye to alleviate diplopia
 C. Prisms for alleviation of diplopia
 D. Strabismus surgery
 E. Monitoring for resolution, worsening, or stability with serial motility examinations
 F. Additional serologic and imaging investigations as indicated if atypical course for microvascular cranial nerve palsy

V. Describe appropriate patient instructions
 A. Call for worsening diplopia or additional neurological signs and symptoms

Additional Resources
Myasthenia gravis (MG)

I. Describe the approach to establishing the diagnosis

A. Describe the etiology of this disease
 1. Neuromuscular transmission deficit
 2. Autoimmune disease: Autoantibodies to post-synaptic neuromuscular receptors (acetylcholine receptors)
 3. Antibodies more commonly identified in systemic than in purely ocular disease
 4. Congenital myasthenia has different mechanisms

B. Define the relevant aspects of epidemiology of the disease
 1. Associated conditions
 a. Thyroid abnormalities (thyroid eye disease in small percentage of MG patients)
 b. Thymoma
 c. Other autoimmune diseases
 2. Generalization
 a. Majority of purely ocular MG patients will progress to some generalized disease within the first few years
 b. Very unlikely to progress after the first few years if the disease has not progressed beyond the ocular involvement

C. List the pertinent elements of the history
 1. Variable diplopia
 2. Variable eyelid droop
 3. Difficulty with swallowing
 4. Change in tone of voice
 5. Shortness of breath
 6. Systemic weakness
 a. Trouble climbing stairs
 b. Trouble arising from a chair
 7. Fatigability
 8. Variability over longer periods of time
 9. Diurnal variation

D. Describe pertinent clinical features
 1. Ophthalmic signs & symptoms
 a. Ptosis
 i. Present in almost all patients at some time in their disease course
 ii. Worse with prolonged up gaze
 iii. Cogan lid twitch sign (brief overshoot then refixation of the upper lid upon upward saccades)
 b. Diplopia
 c. Extraocular muscle (EOM) motility disturbance
 i. Often not in a pattern fitting a specific cranial neuropathy
 ii. But can mimic any ocular motor cranial neuropathy, internuclear or supranuclear
ophthalmoparesis, or any single extraocular muscle weakness, or total ophthalmoplegia

iii. Saccades frequently abnormal and may be too rapid or too slow
iv. Gaze paretic nystagmus
d. Orbicularis weakness
e. Facial diplegia (bilateral facial weakness)
f. Fatigability
g. Variability
h. Pupil not clinically involved
i. No sensory deficits or pain

2. Neurologic signs & symptoms
 a. Muscle weakness, especially bulbar and facial
 b. Weakness in muscles of mastication; extensors of neck, trunk, and limbs; dysphagia; hoarseness; dysarthria; and dyspnea

3. Associated
 a. Thyroid eye disease in small percentage of MG patients
 b. Other autoimmune diseases

E. Describe appropriate testing and evaluation for establishing the diagnosis

1. Office testing
 a. Rest/ice test (mainly for ptosis)
 b. IV edrophonium test (short-acting cholinesterase inhibitor)
 i. Atropine should be available to treat potential adverse effects of edrophonium
 c. Oral or intramuscular neostigmine (Prostigmin) test (longer-acting cholinesterase inhibitor)
 i. Positive test: improvement in signs in 30-45 minutes
 ii. Use in pediatric patients
d. Serial ocular motility and eyelid examinations

2. Laboratory testing
 a. Acetylcholine receptor antibodies (binding, blocking and modulating): Only about 50% sensitive in ocular MG; higher in generalized disease
 b. Muscle-Specific receptor tyrosine Kinase (MuSK) antibody
 c. Thyroid function tests: evaluate for coexisting thyroid disease

3. Electromyography (EMG)
 a. Repetitive stimulation: Decremental response in MG
 b. Single fiber (orbicularis and frontalis muscles): More sensitive in ocular MG.

4. Chest computed tomography (CT) or magnetic resonance imaging (MRI) (rule out thymus gland abnormalities)

II. Define the risk factors
 A. Autoimmune diseases
 B. Thyroid eye disease

III. List the differential diagnosis
 A. Other neuromuscular transmission deficit
Lambert-Eaton myasthenic syndrome: paraneoplastic
 a. Ptosis
 b. Diplopia rare
 c. EMG can help distinguish from MG

Toxic effect on neuromuscular transmission
 a. Botulism: Caused by Clostridium botulinum toxin
 i. Clinical symptoms
 i) Blurred vision
 ii) Fixed (poorly reactive) pupils
 iii) Ptosis
 iv) Ophthalmoplegia
 v) Facial paralysis and generalized proximal muscle weakness
 b. Medications
 i. Iatrogenic neuromuscular blockade especially succinylcholine in patients at risk
 ii. Anticholinesterase especially organophosphates
 iii. Iatrogenic botulinum toxin injections
 iv. Many agents may exacerbate myasthenia gravis including beta and calcium channel blockers, muscle relaxants, statins, aminoglycosides

B. Other causes of ptosis
 1. Levator dehiscence
 2. Mechanical ptosis

C. Other causes of diplopia
 1. Restrictive strabismus
 2. Skew deviation
 3. Ophthalmoplegia
 a. Pupil-sparing cranial nerve (CN) III palsy
 b. 6th nerve palsy
 c. Multiple cranial nerve palsies
 d. Internuclear ophthalmoplegia (INO)
 e. Supranuclear motility disturbance (eg, gaze palsies)

IV. Describe patient management in terms of treatment and follow-up

A. Pyridostigmine (Mestinon®): cholinesterase inhibitor
 1. Side effects: abdominal and leg cramping, diarrhea

B. Functional
 1. Lid crutches
 2. Patch
 3. Prism

C. Immunomodulation
 1. Corticosteroids
 2. Corticosteroid sparing agents
3. Plasmapheresis
4. IV immune globulin
5. Thymectomy

D. **Strabismus and/or ptosis surgery**
 1. Less predictability
 2. Risk of persistent or recurrent diplopia or ptosis
 3. Postoperative corneal exposure may be difficult to manage with concurrent facial weakness

V. **List the complications of treatment, their prevention and management**

 A. **Worsen weakness (myasthenic crisis)**
 1. Possibly less likely with slow buildup of steroid dose

 B. **Gastrointestinal (GI) symptoms from pyridostigmine**
 1. Diarrhea
 2. Abdominal cramping

 C. **Complications of corticosteroid/immunosuppressive therapy (See Systemic corticosteroids in neuro-ophthalmology)**

 D. **Corneal exposure with ptosis surgery**

VI. **Describe disease-related complications**

 A. **Progression of ocular to generalized myasthenia gravis**
 1. 50% patients initially with isolated ocular involvement
 2. Majority of purely ocular MG patients will progress to some generalized disease within the first few years of onset
 3. Rarely generalizes beyond few years after diagnosis

 B. **Respiratory failure**

 C. **Severe ptosis with visual impairment**

 D. **Aspiration**

VII. **Describe appropriate patient instructions**

 A. **Seek medical attention immediately for**
 1. Shortness of breath
 2. Difficulty swallowing

 B. **Avoid medications that exacerbate myasthenia gravis**

 C. **Report GI side effects of pyridostigmine**

 D. **Inform all your physicians that you have myasthenia gravis**

 E. **Careful preoperative evaluation by anesthesiologist to optimally manage patient in the perioperative period**
 1. Special attention to protecting and maintaining the airway
 2. Special consideration of muscle relaxant use for general anesthesia

Additional Resources

1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.
Dorsal midbrain syndrome (pretectal or Parinaud syndrome)

I. Describe the approach to establishing the diagnosis

A. Describe the etiology of this disease
 1. Lesions of the dorsal mesencephalon region
 a. Extrinsic pressure on dorsal mesencephalon—tumors in the pineal region are most common, obstructive hydrocephalus, intraventricular hemorrhage, aqueductal stenosis
 b. Intrinsic lesions of the dorsal midbrain such as vascular, inflammatory, infectious, and neoplastic
 c. Midbrain stroke
 d. Multiple sclerosis

B. Define the relevant aspects of epidemiology of the disease
 1. Affects all demographics

C. List the pertinent elements of the history
 1. Inability to look up
 2. Blurred vision, often at near
 3. Diplopia

D. Describe the pertinent clinical features
 1. Best described as abnormalities of eye movements and pupil dysfunction. May have some of the following signs:
 a. Upgaze paresis—most common feature
 b. Mid-dilated pupils
 c. Light-near dissociation of pupils (pupils react to near effort or accommodation more than to light)
 d. Convergence-retraction nystagmus on attempted upgaze from co-contraction of extraocular muscles, which causes retraction and convergence of the globes
 e. Neurogenic eyelid retraction (Collier sign)
 f. Impaired conjugate vertical pursuit (usually upgaze)
 g. Other neuro-ophthalmologic findings vary with severity and etiology
 h. Papilledema
 i. Skew deviation
 j. Convergence spasm or palsy
 2. Tonic downgaze in premature newborns, combined with eyelid retraction = setting sun sign
 a. Can be caused by intraventricular hemorrhage expanding the third ventricle, compressing the pretectum

E. Describe the appropriate testing and evaluation for establishing the diagnosis
 1. Check saccades by having the patient shift gaze between two targets in the vertical plane
 2. Check pursuit by having the patient follow a vertically moving target
 3. Check the pupils for light and near response (will usually react better to accommodation than to light)
 4. Check for convergence-retraction nystagmus by looking for both eyes to make a convergence movement while simultaneously being retracted into the orbit
 a. Elicit during upward saccades exaggerated by using an optokinetic stimulus rotating downward
5. Check for retraction of the upper eyelid
6. Check the fundus for papilledema

II. Define the Risk Factors
 A. None

III. List the Differential Diagnosis
 A. Accommodative spasm/spasm of near reflex
 B. Other disorders of light-near dissociation
 1. Adie pupil
 2. Argyll Robertson pupil
 3. Diabetic pupil
 4. post pan retinal photocoagulation
 C. Thyroid eye disease
 D. Wernicke encephalopathy

IV. Describe the patient management in terms of treatment and follow-up
 A. Describe the natural history, outcome and prognosis
 1. Natural history dependent on etiology
 2. Can improve signs and symptoms with treatment of the underlying cause
 B. Describe medical therapy options
 1. Avoid upgaze
 2. Prisms to move targets into inferior field
 3. Radiation
 C. Describe surgical therapy options
 1. Shunt placement for raised intracranial pressure
 2. Surgery for tumor
 3. Muscle surgery usually ineffective

V. List complications of treatment, their prevention and management
 A. Complications related to shunt failure, which may include vision loss from high intracranial pressure
 B. Complications related to strabismus surgery including persistent diplopia

VI. Describe disease-related complications
 A. Diplopia
 B. Gaze paresis
 C. Other complications related to inciting disease

VII. Describe appropriate patient instructions
A. Treat underlying disease with appropriate medical specialist

Additional Resources

Nystagmus

I. **Describe the approach to establishing the diagnosis**

A. Abnormal eye movement may occur due to

1. Inability to maintain fixation
 a. Fast phase is always in the direction of gaze
 b. Alexander's law

2. Loss of the normal inhibitory influences on the eye movement control system

3. Loss of the normal symmetric input from the vestibular pathways to the oculomotor nuclei

B. List the pertinent elements of the history

1. Age of onset

2. Family history of abnormal eye movements

3. Oscillopsia

4. Associated neurologic and/or vestibular symptoms

5. Medications

C. Describe pertinent clinical features

1. Congenital nystagmus (CN)

 a. Recognized in the first few months of life

 b. May have positive family history

 c. No oscillopsia

 d. Acuity may be normal or diminished

 e. Jerk and/or pendular pattern

 f. Conjugate horizontal movements that remain horizontal in up- and downgaze

 g. Null point

 h. Increasing velocity of slow phase

 i. Accentuated by distant fixation; diminished by convergence

 j. Concurrent strabismus common

 k. Abolished in sleep

 l. Reversal of optokinetic reflex (OKN)

 i. In normal pursuit the nystagmus consists of initial slow phases in the direction of the stimulus, followed by fast, corrective phases. In congenital nystagmus, this may be reversed. This may be due to shifting of the null point.

 m. Differential diagnosis

 i. Afferent visual pathway disorder

 ii. Ocular albinism

 iii. Achromatopsia

 iv. Leber's Congenital Amaurosis

 v. Aniridia

2. Latent nystagmus (LN)

 a. Appears early in life
b. Horizontal conjugate jerk nystagmus that is accentuated or appears only with monocular viewing conditions

c. Fast phase toward the viewing eye

d. Congenital esotropia (ET) common

e. Poor stereopsis

f. May be present with CN

g. Manifest latent nystagmus
 i. Present under binocular viewing conditions.

3. Monocular nystagmus of childhood

a. Monocular vertical or elliptical small amplitude movements

b. May occur with optic neuropathy or amblyopia

c. Warrants neuroimaging when found in an infant to exclude optic nerve/chiasmal tumor (glioma)

4. Spasmus nutans

a. First year of life

b. Intermittent, binocular, very small amplitude, high-frequency (shimmering) horizontal, pendular nystagmus

c. May be dissociated or monocular

d. Subtle head nodding

e. Torticollis

f. Benign, head movement and torticollis usually resolve by the end of the first decade

g. Differential diagnosis
 i. Monocular nystagmus of childhood
 ii. Retinal dystrophies
 iii. Lesions of chiasm

5. Gaze-evoked nystagmus

a. Clinically insignificant when in extremes of far horizontal gaze (end-gaze) with no other features

b. Should prompt further evaluation when asymmetric or sustained
 i. Metabolic
 ii. Toxic
 iii. Brainstem or cerebellar lesion (CVA, MS, tumor)
 iv. Rebound nystagmus in cerebellar disease
 v. Extraocular myopathies, MG

6. Vestibular nystagmus

a. Peripheral vestibular nystagmus
 i. Vertigo, nausea, vomiting
 ii. Symptoms exacerbated by head movements or postures
 iii. Oscillopsia, tinnitus, hearing loss
 iv. Usually unilateral unless toxic
 v. Horizontal-torsional nystagmus that changes with gaze and dampens on fixation
 vi. Acute onset followed by gradually waning symptoms
 i) Dysfunction of the vestibular system end organ (semicircular canals, otolithic structures, vestibular nerve) - Meniere disease, BPPV, systemic autotoxins (AG, chemo Rx), CPA tumors
b. Central vestibular nystagmus
 i. Pure vertical or torsional nystagmus (diagnostic)
 ii. Downbeat nystagmus
 i) Arnold-Chiari type I
 ii) Tumors at foramen magnum
 (i) Spinocerebellar degenerations
 iii) Paraneoplastic syndrome
 iii. Upbeat nystagmus
 (i) Posterior fossa (medulla) lesions
 iv. Periodic alternating nystagmus (PAN)
 i) Strictly horizontal
 ii) Congenital or acquired
 (i) Acquired form: cycle 2-4 minutes
 iii) Cerebellar dysfunction

7. Acquired pendular nystagmus
 a. Poor localizing value
 b. Oculopalatal myoclonus
 i. Lesions affecting the transmission between the cerebellum (flocculus) and the inferior olive
 ii. Hypertrophy of the inferior olivary nucleus

8. See-Saw nystagmus
 a. One eye elevates and intorts while the other eye depresses and extorts
 b. Typically slow and pendular
 c. Congenital
 i. Congenital achiasma
 d. Acquired
 i. Parasellar region tumors (craniopharyngioma)
 ii. Trauma

9. Dissociated nystagmus
 a. INO
 i. Lesion of the MLF
 ii. Ipsilateral slowing of adduction +/- abducting nystagmus

10. Saccadic Intrusions
 a. Square-wave jerks and macro square wave jerks
 i. May be seen in normal elderly when small and low frequency
 ii. Larger amplitude, macro square-wave jerks may be seen with movement disorders (i.e. PSP, Parkinson's)
 b. Ocular flutter
 i. Bursts of horizontal movements with small amplitude but very high frequency
 ii. No inter-saccadic interval
 iii. MS common cause in young adults
 c. Opsoclonus (saccadomania)
 i. Multidirectional, high frequency, larger amplitude
ii. No inter-saccadic interval
 i) Paraneoplastic etiology must be excluded in flutter and opsoclonus
 ii) Neuroblastoma in children
 iii) Small cell lung ca or breast/ovarian in adults
 iv) Anti-Ri/ANNA-2 (breast/ovary) & anti-Hu/ANNA-1 (NB) antibodies in serum or CSF

iii. May be “idiopathic”

11. Additional eye movement abnormalities
 a. Convergence retraction nystagmus - dorsal midbrain syndrome
 b. Superior oblique myokymia - small amplitude, high velocity monocular bursts of vertical or torsional oscillopsia
 c. Oculomasticatory myorhythmia - Whipple disease

D. Describe appropriate testing and evaluation for establishing the diagnosis
 1. Assessing ocular stability in primary and 9 cardinal positions of gaze
 2. Pursuit, saccades
 3. Monocular or binocular
 4. Conjugate or disconjugate
 5. Direction (horizontal, torsional, mixed)
 6. Continuous or induced by a certain position
 7. Pattern
 a. Pendular
 b. Jerk
 c. Saccadic intrusion
 8. Null point
 9. Present under monocular versus binocular condition (latent nystagmus)

II. Differential Diagnosis
 A. Demyelination
 B. Stroke
 C. Drugs
 D. Toxins (EtOH)
 E. Tumors
 F. Trauma
 G. Degenerative diseases
 H. Encephalitis

III. Describe patient management in terms of treatment and follow-up
 A. Medical treatments
 1. Discontinue any causative medications
 2. Correct refractive errors
 3. Prisms
a. Convergence (base-out) prisms for congenital nystagmus or when nystagmus suppressed by near viewing

4. Image stabilization methods

5. Pharmacologic
 a. Gabapentin
 b. Baclofen
 c. Memantine
 d. Clonazepam
 e. Valproate
 f. 4-aminopyridine
 g. 3,4-diaminopyridine

B. Surgical treatment
 1. Extraocular muscle surgery to shift the null point into primary condition

IV. List the complications of treatment, their prevention and management
 A. Complications associated with medications
 B. Complications associated with surgery

Additional Resources
 1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.
Benign essential blepharospasm

I. Describe the approach to establishing the diagnosis

A. Describe the etiology of this disease
 1. Idiopathic
 2. Similar spasms can be associated with Parkinson disease

B. Define the relevant aspects of epidemiology of the disease
 1. Many patients present in the sixth decade
 2. Gender: female>male

C. List the pertinent elements of the history
 1. Begins with excessive blinking
 2. Variable periods of blepharospasm lasting seconds to minutes
 3. May be asymmetric
 4. Progress to complete eyelid closure with functional blindness in some patients
 5. Photophobia and dry eye symptoms are common
 6. Some patients have inability to open the eyelids (apraxia of eyelid opening)
 7. Triggers include sunlight, stress, wind, noise, reading, and fatigue

D. Describe pertinent clinical features
 1. Severe, bilateral involuntary spasms of the orbicularis oculi muscles
 2. Some patients learn techniques to diminish the spasm temporarily such as tongue thrusting, humming, mouth opening, extending the neck, closing one eye, touching around the eye, or rubbing the face. Sleep and rest may improve symptoms
 3. Progression is the rule although usually not to complete incapacitation
 4. Social withdrawal with inability to work or drive may result
 5. Eventually the eyelids may clamp shut and must be pried open with fingers
 6. Brow spasm can also be seen
 7. Associated anatomic problems can result or accompany essential blepharospasm
 a. Brow ptosis
 b. Blepharoptosis, associated levator disinsertion
 c. Entropion or ectropion
 8. Some patients develop lower facial dystonia - orofacial cervical dystonia (Meige syndrome)

E. Describe appropriate testing and evaluation for establishing the diagnosis
 1. Typical presentation without neurological signs makes imaging unnecessary in most cases.

II. List the differential diagnosis

A. Hemifacial spasm (See Hemifacial spasm)
B. Facial myokymia (pontine lesion, multiple sclerosis (MS))
C. Benign facial fasciculations
 1. Risk factors include
 a. Caffeine
b. Stress

c. Physical exertion

d. Fatigue

D. Reflex blepharospasm

1. Risk factors include
 a. Corneal/ocular surface irritation
 b. Anterior uveitis
 c. Dry eye syndrome
 d. Medications causing facial dystonia
 e. Photophobia

E. Tic disorders

III. Describe patient management in terms of treatment and follow-up

A. Botulinum toxin

1. Average duration of therapeutic effect is 3 months, so patients require repeat injections to control spasms. The frequency and dosage of injections may need to be titrated by clinical response, i.e., individualize treatment

2. Discuss use of ocular lubricants and occlusive (moisture chamber) eyewear or goggles after injection if eyelid closure may be impaired

B. Orbicularis myectomy

1. Reserved for patients with an inadequate response to botulinum toxin

2. May continue to need botulinum toxin injections after surgery

C. Oral medications demonstrate limited success and may have significant side effects

D. Address any causes of secondary blepharospasm which may accompany essential blepharospasm (e.g. dry eye syndrome, stress)

E. FL-41 lenses may be of use in some patients to decrease photophobia and increase comfort

IV. List the complications of treatment, their prevention and management

A. Botulinum toxin

1. Complications may involve levator muscle and extraocular muscles
 a. Ptosis (avoid central upper eyelid)
 b. Diplopia

2. Injection should be remote from these muscles and superficial

3. Complications usually will resolve as the medication effects subside

4. Bruising, epiphora, ectropion, lagophthalmos

5. Relative contraindications include pregnancy, lactation, myasthenia gravis

6. Respiratory suppression and other complications may be seen with the use of non-approved forms of botulinum toxin, especially in young patients

B. Orbicularis myectomy

1. Persistent blepharospasm (in addition to Botox injections)

2. Necrosis of overlying skin

3. Lymphedema, lagophthalmos, lower eyelid retraction, ectropion, ptosis
V. Describe disease-related complications
 A. Visual dysfunction with lifestyle limitations

VI. Describe appropriate patient instructions
 A. Recommend treatment when functioning becomes limited
 B. Refer to local/regional/national support groups

Additional Resources

Facial nerve paresis

I. Describe the approach to establishing the diagnosis

A. Describe the etiology of this disease

1. Peripheral facial weakness
 a. Usually unilateral
 b. Idiopathic (some may relate to viral infection, specifically HSV-1)
 c. Auto-immune (SLE, Miller Fisher variant of Guillain-Barre syndrome)
 d. Infectious (HSV, lyme disease, Zoster, especially with VIII N. involvement- Ramsey-Hunt, otitis media, syphilis)
 e. Traumatic
 f. Neoplastic (parotid gland tumors, acoustic neuroma, meningioma
 g. Inflammatory (sarcoid)
 h. Iatrogenic (botulinum toxin injection, acoustic neuroma resection, parotid gland surgery, face/brow lifting, temporal artery biopsy)

2. Central facial weakness
 a. Often bilateral
 b. Frequently associated with long tract signs and VI nerve dysfunction
 c. Pathophysiology
 i. Vascular (vertebrobasilar insufficiency)
 ii. Inflammatory (demyelinating)
 iii. Neoplastic (glioma, metastatic)

B. Define the relevant aspects of epidemiology of the disease

1. Peripheral idiopathic (Bell palsy) most common type of facial neuropathy
2. Increase risk in diabetes, pregnancy, positive family history

C. List the pertinent elements of the history

1. Mild pain, usually retroauricular may precede development of palsy

D. Describe pertinent clinical features

1. facial weakness
2. Cutaneous sensation is intact
3. Increased tearing may be noticed
4. Ectropion
5. Diminished taste may be present - the facial nerve provides taste to the anterior 2/3 of tongue
6. Dysacusis may be noted - the facial nerve innervates the stapedius muscle of the inner ear
7. External auditory canal may show a vesicular dermatitis in patients with herpes zoster (Ramsey Hunt syndrome)
8. Recovery typically begins at 3 weeks and is complete by 3 to 4 months

E. Anatomy of cranial nerve VII (facial nerve)

1. Supranuclear
 a. Lesions affect the upper and lower face variably based on the following
 i. Axons to the upper face synapse bilaterally within the pons.
ii. Axons to the lower face synapse only within the contralateral nucleus
 i) Significance is upper motor neuron 7th nerve palsy causes isolated contralateral lower facial droop whereas lower motor neuron 7th nerve palsy produces both upper and lower ipsilateral facial paresis

2. Nuclei
 a. Clinical findings of brain stem lesions depend on level of involvement

3. Major motor branches of the facial nerve
 a. Temporal
 i. Crosses over the zygomatic arch and is at risk of injury with some periocular surgery
 b. Zygomatic
 c. Buccal
 d. Mandibular
 e. Cervical

F. Describe appropriate testing and evaluation for establishing the diagnosis
 1. Distinguish upper and lower motor neuron abnormalities
 a. Upper motor neuron does not involve the forehead due to bilateral (crossed and uncrossed) innervation
 b. Lower motor neuron involves the entire ipsilateral face including the forehead
 c. This distinction is helpful in defining etiology and planning evaluation/management
 2. Consider imaging with computed tomography (CT) or magnetic resonance imaging (MRI) (See Computed tomography) (See Magnetic resonance imaging)
 a. If facial weakness continues to progress after three weeks or failure to improve after 4-6 months
 b. Associated neurologic abnormalities
 i. Other cranial nerve palsy (VI, VIII)
 ii. Weakness, ataxia
 c. Signs of meningitis
 d. Facial twitch or spasm preceding paralysis which may be indicative of nerve irritation by tumor
 3. Consider serologic testing for Lyme, syphilis, human immunodeficiency virus (HIV)
 4. Consider screening for sarcoidosis

II. Define the risk factors
 A. History of tick bites suggests an underlying diagnosis of Lyme disease
 B. History of sarcoidosis or pulmonary problems
 C. Immune suppression (HIV)

III. Describe patient management in terms of treatment and follow-up
 A. Describe the natural history, outcome and prognosis
 1. Most patients with isolated idiopathic palsy experience a satisfactory spontaneous recovery
 B. Describe medical therapy options
 1. Corticosteroids likely have a positive effect on speed and degree of recovery.
 2. Antivirals including acyclovir may play a role, but have unclear efficacy
 3. Artificial tears and lubricants for corneal exposure
4. Taping eyelid shut for exposure

C. Describe surgical therapy options
 1. Tarsorrhaphy for exposure
 2. Gold weight implant
 3. Surgical correction of lower eyelid malposition
 4. Facial nerve reconstruction/re-innervation

IV. List the complications of treatment, their prevention and management
 A. Steroid complications (See Systemic corticosteroids in neuro-ophthalmology)
 B. Gold weight may become infected or extrude
 C. Ectropion repair is often ineffective unless combined with midface lifting

V. Describe disease-related complications
 A. Exposure keratopathy (Corneal ulcer, etc.)
 B. Development of aberrant regeneration

VI. Describe appropriate patient instructions
 A. Call for redness, irritation
 B. Call for decrease vision
 C. Call for dry eye symptoms

Additional Resources
Hemifacial spasm

I. Describe the approach to establishing the diagnosis

A. Pathophysiology
 1. Ephaptic transmission
 2. Vascular compression of facial nerve root at exit from brainstem
 a. Normal vessel in aberrant location (e.g. AICA, PICA)
 b. Dolichoectatic vertebral or basilar artery
 3. Cerebellar pontine angle (CPA) mass (rare) e.g. meningioma, acoustic neurinoma
 4. Post-paralytic (i.e. s/p Bell Palsy)

B. Symptoms
 1. Paroxysmal painless synchronous contraction of muscles innervated by facial nerve
 2. Almost always unilateral
 3. Present during sleep (unlike blepharospasm)

C. Signs
 1. Clonic or tonic episodic contraction of muscles innervated by CN VII
 2. Lid closure
 3. May be associated with facial paresis

D. Work-up
 1. Imaging to identify vascular anomaly or rare tumor in CPA

II. Define the risk factors

A. Age - most common in middle age, though may develop at any age
B. Posterior fossa tumor
C. Dolichoectatic vertebral or basilar artery
D. Normal artery in abnormal location
E. Previous facial palsy

III. List the differential diagnosis

A. Blepharospasm
 1. Essential
 2. Secondary (corneal disease, dry eye)

B. Facial myokymia
 1. Pontine demyelination (e.g. multiple sclerosis)
 2. Pontine tumor

C. Benign facial fasciculations
 1. Caffeine
 2. Stress

D. Facial tic
E. Aberrant regeneration of the facial nerve

IV. Describe the patient management in terms of treatment and follow-up

A. Describe the natural history, outcome and prognosis
 1. Usually progressive (worsening with time)
 2. Often starts with contractions around the eye and spreads to involve the lower facial musculature
 3. May be associated with facial paresis

B. Describe medical therapy options
 1. Botulinum toxin chemodenervation (>90% effective)
 a. Avoid the upper lip and central upper eyelid
 b. Concentrate around orbicularis oculi and cheek
 c. Onset of effect 2-3 days after injection
 d. Maximal effect in 10-14 days

C. Describe surgical therapy options
 1. Neurovascular decompression of the facial nerve

V. List the complications of treatment, their prevention and management

A. Botulinum toxin
 1. Complications may involve levator muscle, extraocular muscles, and muscles innervated by the facial nerve where botulinum toxin is injected
 a. Ptosis (avoid central upper eyelid)
 b. Diplopia
 c. Facial droop/excessive facial weakness, drooling
 2. Injections should be superficial and remote from the extraocular muscles, the central portion of the levator palpebrae, and the orbicularis oris
 3. Complications usually will resolve as the medication effect subsides
 4. Bruising, epiphora, ectropion, lagophthalmos
 5. Relative contraindications include pregnancy, lactation, myasthenia gravis
 6. Respiratory suppression and other complications may be seen with the use of non-approved forms of botulinum toxin, especially in young patients

B. Surgical neurovascular decompression
 1. Persistent or recurrent spasm
 2. Facial nerve palsy
 3. Stroke
 4. Hearing loss
 5. Death

VI. Describe disease-related complications

A. Difficulty with visual activity
 1. Driving
 2. Reading
VII. Describe appropriate patient instructions

A. Feedback on effectiveness of botulinum toxin injections (either re-evaluate 2-4 weeks after initial injection or inquire at follow-up visit)

B. Call for side-effects (e.g. ptosis, diplopia, ocular irritation/tearing)

C. Call if recurrent symptoms

D. Referral for a discussion of surgical options

Additional Resources

Idiopathic orbital inflammatory disease (AKA: orbital pseudotumor, non-specific orbital inflammation)

I. Describe the approach to establishing the diagnosis

A. Describe the etiology of this disease

1. Orbital inflammation may occur as
 a. "Idiopathic", isolated orbital process not associated with an otherwise identifiable disease, the etiology of this entity is not known at present
 b. Local manifestation of a widespread systemic disease, also presently of unknown etiology. May be initial manifestation of previously unidentified systemic disease

2. Several classification systems in
 a. Pathologic (e.g., type of cellular infiltrate)
 i. Sclerosing orbital pseudotumor a subtype distinguished histologically by degree of fibrosis and may be refractory to treatment with prednisone or irradiation, and aggressive requiring additional immunosuppressive agents
 b. Anatomic (e.g., myositis, perineuritis, scleritis, dacryoadenitis, diffuse orbital fat involvement, orbital apex/cavernous sinus (Tolosa-Hunt syndrome))
 c. Radiologic (e.g., localized, diffuse, anterior, posterior)
 d. Time course (e.g., acute, subacute or chronic)

B. Define the relevant aspects of epidemiology of the disease

1. In adults, usually unilateral
2. If bilateral, consider even more so an association with systemic disease
3. In children, more often bilateral and not associated with systemic disease

C. List the pertinent elements of the history

1. The symptoms often vary by the tissue affected
 a. Acute or chronic recurrences
 b. Pain (local, diffuse, tenderness, pain with eye movement)
 c. Diplopia
 d. Blurred or otherwise reduced vision
 e. Red eye
 f. Signs of orbital inflammation (e.g., swelling, chemosis, proptosis, ptosis)

2. Look for signs/symptoms of associated systemic disease (e.g., SLE, sarcoidosis, rheumatoid arthritis, granulomatosis with polyangiitis (Wegener granulomatosis)
3. Systemic constitutional symptoms common in children
4. Acute disease typically shows dramatic improvement of symptoms to corticosteroid therapy
5. Symptoms frequently recur if corticosteroids are tapered too rapidly

D. Describe pertinent clinical features

1. Anterior segment inflammation
 a. Dilated scleral and episcleral vessels
b. Conjunctival chemosis
c. Cell and flare
d. Inflammatory scleral reaction

2. Posterior segment inflammation
a. Papillitis
b. Scleral thickening and/or choroidal folds
c. Retinal edema

3. Adnexa
a. Eyelid edema/erythema
b. Lacrimal gland enlargement

4. Orbital
a. Proptosis
b. Resistance to retropulsion
c. Ophthalmoplegia
d. Point localizable tenderness

E. **Describe appropriate testing and evaluation for establishing the diagnosis**

1. Magnetic resonance imaging (MRI) (T1 fat suppressed with and without contrast)- contrast enhancement of inflamed areas
2. Computed tomography (CT), with contrast- stranding of orbital fat, enhancement of inflamed areas, less sensitive than MRI
3. Ultrasound (especially scleritis, Tenon's thickening, T sign junction of optic nerve and sclera)
4. Surgical biopsy, especially in atypical or recurrent cases
5. Ancillary evaluation for concurrent disease
 a. Guided by the review of symptoms
 b. Selected cases warrant hematologic/oncologic consultation for lymphoproliferative disease or other malignancy
 c. Selected cases warrant rheumatologic/immunologic consultation, or rare parasitic evaluation
 d. Give consideration to ANA, RPR, FTA, ANCA, ACE, CBC

II. **Define the risk factors**

A. Bilaterality in adults makes one think of systemic disease; whereas children can have bilateral disease in the absence of an underlying systemic disorder

B. Concurrent immunologic or rheumatologic disease (especially vasculitis, sarcoidosis, polyarteritis nodosa, connective tissue disease, Wegener granulomatosis)

III. **List the differential diagnosis**

A. Orbital cellulitis
B. Thyroid eye disease (Graves ophthalmopathy)
C. Orbital vasculitis (Wegener granulomatosis, polyarteritis nodosa, giant cell arteritis)
D. Orbital sarcoid, granulomatous disease
E. Neoplastic
F. Fistula (dural arteriovenous malformation/ carotid cavernous fistula)
G. Polyclonal/monoclonal orbital infiltrates (i.e. lymphoma)
IV. Describe patient management in terms of treatment and follow-up

A. Describe medical therapy options
 1. Corticosteroids
 2. Adjuvant immunosuppression with evolving role of biologic therapies and other steroid sparing agents
 3. Control of concurrent systemic disease

B. Describe surgical therapy options
 1. Biopsy for histology, assess for lymphoproliferative disease or findings characteristic of known inflammatory disease
 2. Rarely a surgically excisable lesion although role for debulking a mass

C. Radiation therapy (alternative when refractory to steroids)

V. List the complications of treatment, their prevention and management

A. Corticosteroid-induced side effects (See Systemic corticosteroids in neuro-ophthalmology)

B. Complications of other immunosuppression
 1. Myelosuppression
 2. Genitourinary toxicity (cyclophosphamide: hemorrhagic cystitis)
 3. Risk of sterility
 4. Secondary malignancy
 5. Teratogenic effect
 6. Musculoskeletal system
 7. Gastrointestinal

C. Radiation effects
 1. Radiation retinopathy (diabetes mellitus is relative contraindication to use)
 2. Optic neuropathy (unlikely with standard radiation dose)
 3. Dry eye, ocular surface irritation
 4. Secondary tumor risk
 5. Cataract development
 6. Anterior segment ischemia-neovascular glaucoma

D. Monitor patients during and after radiation period

VI. Describe disease-related complications

A. Specific to underlying disease
 1. Manifestation of lymphoproliferative disease
 2. Systemic rheumatologic disease
 3. IgG4 disease- fibrosing disease elsewhere i.e. retroperitoneal,

B. Infiltration of adjacent structures
1. Intracranial spread

C. Orbital deformity

D. Extraocular muscle damage
 1. Ocular misalignment
 2. Paretic, restrictive or both

E. Visual loss
 1. Optic nerve involvement
 2. Ocular involvement
 3. Retinal (choroidal) involvement

F. Hypoesthesia

G. Abnormal pupil/accommodation loss

H. Orbital ischemia/compartment syndrome/orbital infarction

I. Exposure syndrome with severe proptosis or lid retraction

J. Chronic pain

VII. Describe appropriate patient instructions

A. Discussion of risks of therapy

B. Discussion signs of clinical progression

C. Importance of ancillary care to avoid complications

Additional Resources

1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.

Thyroid eye disease (thyroid (associated) orbitopathy, Graves orbitopathy)

I. Describe the approach to establishing the diagnosis

A. Describe the etiology of this disease
 1. Variable relation to thyroid status, euthyroid or dysthyroid concurrent disease
 2. Primary disease of the immune system causing autoimmune disease with potential target cells within orbit as well as the thyroid gland, skin

B. Define the relevant aspects of epidemiology of the disease
 1. Associated with other systemic autoimmune disorders, notably myasthenia gravis in roughly 1% of patients
 2. Female predominance
 3. Familial tendency (family history raises suspicion)

C. List the pertinent elements of the history
 1. Eyelid retraction
 2. Proptosis
 3. Diplopia
 4. Photophobia
 5. Symptoms related to ocular surface exposure
 6. Insidious or (in a minority of cases) rapid visual loss
 7. May exhibit signs/symptoms of hypothyroidism/hyperthyroidism
 8. Position dependent orbital edema
 9. Orbital discomfort and pressure sensation

D. Describe pertinent clinical features
 1. Orbital inflammatory signs including injection specifically worse over muscle insertions and chemosis (may be diffuse or inferior)
 2. Eyelid lag, eyelid retraction, lagophthalmos
 3. Exposure keratopathy
 4. Restrictive strabismus (most commonly esotropia/hypotropia)
 5. Exophthalmos (resistant retropulsion)
 6. Elevated intraocular pressure (IOP) which may increase in upgaze
 7. Loss of vision without marked proptosis may exist
 8. Pattern of extraocular muscle (EOM) enlargement: Inferior > Medial > Superior > Lateral
 9. Muscle tendon relatively spared

E. Describe appropriate testing and evaluation for establishing the diagnosis
 1. Thyroid orbitopathy is a clinical diagnosis
 2. Imaging (may not be uniformly necessary)
 a. Computed tomography of orbits (non-enhanced is usually adequate)
 b. Magnetic resonance imaging (MRI)
3. B scan ultrasonography
4. Forced duction testing
5. Gaze-evoked IOP elevation
6. Consider referral to endocrinologist to assess thyroid function testing (TSH, free T4, free T3)
7. Thyroid antibody testing (thyroid stimulating immunoglobulin (TSI), antithyroglobulin ab, thyroid peroxidase ab (TPO), thyrotropin receptor ab/ TBI

II. Define the risk factors
 A. Smoking
 B. Other autoimmune diseases
 C. Family history
 D. Treatment with radioactive iodine for hyperthyroidism may exacerbate orbital disease
 1. Concomitant use of steroids may mitigate this effect

III. List the differential diagnosis
 A. Dural arteriovenous malformation
 B. Carotid-cavernous fistula
 C. Non-specific orbital inflammation
 D. Orbital tumor (lymphoma/leukemic infiltrate/single or multiple metastasis)
 E. Ocular myasthenia gravis (possibly concurrence)
 F. Orbital cellulitis
 G. Orbital myositis
 H. Blepharitis, dry eye syndrome

IV. Describe patient management in terms of treatment and follow-up
 A. Describe medical therapy options
 1. Endocrine consultation
 2. Corticosteroids
 3. Other immune suppressive agents
 a. Controversial and unproven (rituximab)
 4. Smoking cessation
 5. Orbital radiation
 6. Role of thyroid ablation and orbitopathy progression
 7. Modalities to treat symptoms such as dry eyes, e.g., lubricants
 B. Describe surgical therapy options
 1. Surgical planning
 a. Unless medical necessity requires otherwise, surgery should be performed in the following order
 i. Orbital
 ii. Strabismus
 iii. Eyelid
b. Unless medical necessity requires otherwise, surgery should be postponed until patients are clinically stable. The exact duration recommended, varies among surgeons (3-12 months)

2. Orbital decompression for optic neuropathy
 a. Indications for surgical decompression
 i. Optic neuropathy
 ii. Severe proptosis with exposure keratopathy
 iii. Unacceptable cosmesis
 b. Techniques
 i. Bony decompression
 i) Decompression of orbital apex for compressive optic neuropathy
 ii) Decompression of the medial, inferior and lateral walls may be performed in isolation or in any combination. Opinions vary and are currently evolving regarding the best technique
 ii. Orbital fat excision
 iii. Complications
 i) Visual loss
 (i) Hemorrhage
 (ii) Direct injury to optic nerve
 ii) Diplopia
 (i) Rates vary, but have been reported to range from 5 to 20%
 (ii) May be less apt if decompression of the orbital floor is avoided

3. Strabismus surgery when motility exam is stable
 a. Recession of tight muscle, not resection, should be employed

4. Eyelid malposition
 a. Indications
 i. Ocular surface exposure
 ii. Cosmetic rehabilitation (should be postponed until clinically stable)
 b. Technique
 i. Upper eyelid retraction
 i) Levator recession
 ii) Blepharotomy
 ii. Lower eyelid retraction
 i) Posterior lamellar spacer
 ii) Correction of laxity (tarsal strip) if present
 iii) Midface elevation
 iv) Orbital rim augmentation
 iii. Tarsorrhaphy (consider as a last resort) but can effectively manage exposure secondary to both upper and lower retraction

C. Radiation therapy
 1. Indications are controversial
 2. May have a role in patients with optic neuropathy or active inflammation in the orbit

V. List the complications of treatment, their prevention and management
A. Corticosteroids (See Systemic corticosteroids in neuro-ophthalmology)

B. Surgery
 1. Eyelid deformity
 2. Ocular misalignment
 3. EOM damage/restrictive strabismus/neuropathic damage
 4. Postoperative or delayed visual loss/central retinal artery occlusion
 5. Hypoesthesia
 6. Vision loss

C. Abnormal pupil/accommodation loss

D. Orbital cellulitis

E. Dry eye and retinopathy may result from radiation therapy

VI. Describe disease-related complications

A. Anterior segment
 1. Corneal exposure problems

B. Ocular motility abnormalities

C. Raised IOP
 1. Glaucoma may be overlooked

D. Optic neuropathy

E. Cosmetic deformity

VII. Describe appropriate patient instructions

A. Smoking cessation

B. Report any progression in symptoms

C. Report any change in therapeutic plan by endocrinologist

Additional Resources

1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.

Optic nerve sheath meningioma

I. Describe the approach to establishing the diagnosis

A. Describe the etiology of this disease
 1. Benign tumor arachnoid cap cells

B. Define the relevant aspects of epidemiology of the disease
 1. One of the two most common optic nerve tumors
 2. Adult female predominance

C. List the pertinent elements of the history
 1. Visual disturbance (usually monocular)
 2. Transient complaints (transient visual obscurations) versus slowly progressive visual loss gaze-evoked complaints, e.g., gaze evoked visual loss

D. Describe pertinent clinical features
 1. Progressive loss of visual acuity, color or field
 2. Pattern of field loss
 3. May produce any pattern of visual field loss
 4. Optic atrophy and/or edema if located immediately posterior to the globe
 5. Optociliary vessels (enlargement of retinochoroidal collaterals)

E. Describe appropriate testing and evaluation for establishing the diagnosis
 1. Orbital computed tomography (CT) with contrast to look for
 a. Calcification or thickening nerve sheath (tram track)
 b. Enlargement of optic canal
 c. Adjacent bony hyperostosis
 d. Contrast enhancement
 2. MRI scan of orbit/optic nerve: fat suppressed with and without contrast is superior to CT in defining the extent of the tumor
 3. Biopsy is not necessary to establish the diagnosis in most cases with characteristic findings on imaging studies and may result in visual loss

II. Define the risk factors

A. Increased prevalence with neurofibromatosis

III. List the differential diagnosis

A. Other optic neuropathy (unobserved nonarteritic anterior ischemic optic neuropathy (NAION))

B. Optic neuritis
 1. Typical course of progression over 7 to 10 days with recovery over following weeks to months
 2. Associated neuroradiographic findings in demyelination

C. Sarcoidosis

D. Inflammatory disease of optic nerve
 1. Perineuritis
2. Systemic lupus erythematosus
3. Therapeutic corticosteroid trial might be used to differentiate this from optic nerve sheath meningioma (ONSM)

E. Spread of skull base meningioma
F. Neoplastic - metastatic, lymphoproliferative
G. Optic nerve glioma
 1. Distinguishing nerve vs. nerve sheath tumor
 2. Infiltrative optic neuropathy

IV. Describe patient management in terms of treatment and follow-up
A. Describe medical therapy options
 1. Observation may be the most appropriate therapy
B. Describe surgical therapy options
 1. Biopsy typically unnecessary
 a. May cause visual loss by disrupting blood flow
 b. May be indicated in atypical cases
 2. Surgical debulking of tumor for disfiguring proptosis
 a. Consider in cases with severe visual loss
 b. Excision may be indicated with some intracranial lesions
C. Role of radiation
 1. Consider in progressive cases
 2. Considered treatment of choice by most clinicians
 3. May improve prognosis
 a. Improvement in vision may be seen
 b. May slow but not stop progression

V. List the complications of treatment, their prevention and management
A. Radiation effects
 1. Optic neuropathy
 2. Radiation retinopathy
 3. Dry eye
 4. Secondary tumor risk
 5. Cataract development
B. Avoidance of radiation effects
 1. Limit radiation therapy (XRT dose)
 2. Consult with radiation therapist to choose appropriate delivery model
 3. Treatment of complications as necessary
 4. Monitor patients during radiation period
C. Surgical risks
 1. Related to approach used
 2. Risks of anesthesia
3. Disruption of pial blood supply (may cause complete visual loss)
4. Cranial neuropathy
5. Cerebrospinal fluid leak
6. Spread of tumor

VI. Describe disease-related complications
 A. Visual loss
 B. Intracranial spread
 C. Little risk for contralateral spread
 D. Strabismus
 E. Exposure keratopathy

VII. Describe appropriate patient instructions
 A. Appropriate patient follow-up
 B. Scanning regimen in follow-up
 C. Seek attention for episodes of rapid change, pain
 D. Discussion of radiation risks
 E. Treatment of dry eye post radiation

Additional Resources
 1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.
 2. AAO, Optic Nerve Disorders, 1996, p.115-121.
Orbital tumor causing neuro-ophthalmic manifestations

I. Describe the approach to establishing the diagnosis

A. Describe the etiology and epidemiology of this disease (only the most common/relevant neoplasms are listed)

1. Cavernous hemangioma
 a. Most common benign orbital tumor of adulthood
 b. Usually intraconal
 c. Slow growing
 d. May present with proptosis without other findings
 e. Often found incidentally

2. Meningiomas
 a. Most common intrinsic optic nerve tumor in adulthood
 i. Presents with proptosis and/or vision loss
 b. May also invade the orbit secondarily from intracranial location i.e. clinoidal, cavernous sinus, olfactory groove
 c. More common in women
 d. Usually benign but rarely can be malignant
 e. Sphenoid wing meningioma - spanning extradural to intraorbital spaces
 i. May present with diplopia, proptosis, temporalis fullness, and visual loss

3. Glioma optic nerve
 a. Most common intrinsic optic nerve tumor in childhood
 b. May be associated with neurofibromatosis
 c. Two distinct growth patterns
 i. May grow within the nerve itself
 ii. May grow primarily as arachnoid gliomatosis
 d. May have a nonaggressive course with stable level of vision loss and do not always require intervention

4. Schwannoma
 a. Benign tumor of oligodendrocytes
 b. In the orbit, may arise from any peripheral nerve
 c. May have intracranial component(s) hindering complete excision

5. Lymphoproliferative disease
 a. MALT type lymphoma most common
 b. May involve any or multiple orbital structures
 c. Predilection for lacrimal gland involvement
 d. May be bilateral

6. Metastatic disease
 a. Breast cancer most common in women
7. Cutaneous tumor with secondary spread
 a. Squamous cell carcinoma is most common via perineural invasion or direct invasion
 b. Basal cell usually invades orbit directly but may also spread along sensory nerves
 c. Melanoma

8. Dermoid
 a. Common benign congenital tumor
 b. Age
 i. Usually recognized in childhood
 ii. May rarely present in adulthood
 c. Most often located adjacent the frontozygomatic suture
 i. May have an orbital component "dumbbell lesion"
 ii. May be located entirely within the orbit
 d. May present as inflammatory lesion if keratin ruptures through cyst wall

9. Capillary hemangioma
 a. Congenital tumor
 b. Enlarges during first one to two years followed by involution
 c. Amblyopia may result from a number of mechanisms
 i. Occlusive from ptosis
 ii. Astigmatic
 d. Intervention is usually indicated with visual compromise but medical treatment often highly successful

10. Plexiform neurofibroma
 a. Seen almost exclusively in the setting of NF 1
 b. Diffusely infiltrative

11. Lymphangioma
 a. Benign tumor
 b. Composed primarily of lymphatics but may have venous vascular components to varying degree
 c. Spontaneous hemorrhage may occur (chocolate cyst)
 d. May enlarge with upper respiratory or other infections

12. Rhabdomyosarcoma
 a. Most common soft tissue malignancy in children
 b. May present rapidly resembling a cellulitis
 c. Treated with radiation and chemotherapy

13. Neuroblastoma
 a. May result in characteristic "raccoon eye" hemorrhage

14. Pleomorphic adenoma
 a. Benign epithelial lacrimal gland neoplasm with malignant potential
 b. Usually presents with several years history of proptosis or infra-medial globe displacement
 c. If characteristic imaging findings are seen complete excision is indicated
 d. Incomplete excision may increase risk of recurrent disease or malignant degeneration
15. Adenoid cystic carcinoma
 a. Most common malignant epithelial tumor of the lacrimal gland
 b. Often presents with pain due to sensory nerve invasion

16. Adjacent invasion from sinuses/bone structures
 a. Mucocele/mucopyocele
 b. Osteoma
 c. Fibrous dysplasia
 d. Sinus tumors
 i. Carcinoma and adenocarcinoma
 ii. Lymphoma
 iii. Esthesioneuroblastoma

B. List the pertinent elements of the history
1. Blurred vision, distorted images
2. Painful, painless
3. Red desaturation, dim vision
4. Globe malposition
5. Double vision
6. Disease of adjacent tissue (brain, sinus, facial structures)
7. Numbness
8. Bloody tears
9. Headache
10. Hyperopic shift
11. Nasal congestion (chronic), epistaxis
12. Known history of other malignancy
13. Known history of genetic syndrome
14. Gaze-evoked vision loss

C. Describe pertinent clinical features
1. Optic nerve compression (abnormal acuity, afferent pupillary defect, visual field loss)
2. Restrictive, paralytic, or mechanical strabismus
3. Proptosis
4. Globe dystopia
 a. Direction of globe displacement affects differential diagnosis as it often determines anatomic region of tumor origin
5. Cranial nerve (CN) dysfunction (I, II, III, IV, V1, V2, VI)
6. Anterior segment
 a. Chronic eyelid abnormalities or proptosis may lead to cornea exposure and scarring
7. Posterior segment abnormality (choroidal folds, optic nerve swelling and/or pallor)
8. Facial deformity, eyelid deformity

D. Describe appropriate testing and evaluation for establishing the diagnosis
1. Magnetic resonance imaging (MRI) orbits with T1 fat suppressed images with and without contrast
2. Computed tomography (CT) orbits
3. Orbital ultrasound
II. Define the risk factors

A. Known malignancy
B. Genetic predisposition (xeroderma pigmentosa, neurofibromatosis)
C. Previous ocular or orbital tumor (malignant or benign)
D. Sun exposure (eyelid tumors)
E. Smoking and other risk factors of systemic disease which metastasize
F. Advancing age

III. List the differential diagnosis

A. Nonspecific orbital inflammation (inflammatory or sclerosing)
B. Vascular malformations
C. Scleritis
D. Carotid-cavernous fistula
E. Thyroid eye disease (Graves ophthalmopathy)
F. Loculated infection (abscess, tuberculosis, parasitic, acute fungal, chronic fungal)
G. Orbital manifestation of systemic disease (vasculitis, sarcoidosis)

IV. Describe the patient management in terms of treatment and follow-up

A. General principles
 1. Individualized treatment and follow-up varies greatly with disease etiology
 2. Treatment may require consultation from neurosurgical, ear, nose and throat, facial plastic surgeons as well as oncologist and internists
 3. Observation may be indicated for presumed benign tumor with low likelihood of causing compressive or other damage
 4. Some tumors are managed surgically: needle biopsy, excisional biopsy, incisional biopsy, limited orbital approach, craniofacial approach
 5. Other lesions are best treated using radiotherapeutic techniques
 6. Other lesions are best treated using chemotherapy
 7. Serial monitoring (clinical, radiographic, and visual field examination)

B. Surgical management of benign lesion
 1. Indication
 a. Progressive growth documented and/or expected
 i. Surgical removal of an asymptomatic benign lesion, while small, may be preferential to waiting until the lesion is symptomatic, when larger and likely more difficult to excise
 b. Compressive optic neuropathy
 c. Motility abnormalities
 i. May result from muscle displacement, compression of innervation, or direct involvement of muscle
 d. Proptosis
 i. Cosmesis
 ii. Ocular surface exposure
C. Surgical management of malignant lesion

1. Indication
 a. Diagnostic
 b. Irradiation of disease, when isolated to the orbits
 c. Palliative
 i. Pain control
 ii. Reduce functional consequences of tumor which parallel those outlined for benign lesions

D. Potential complications of surgery

1. Cosmetics
 a. Incision related scaring
 b. Related to soft tissue loss
 i. Enophthalmos
 ii. Eyelid and/or conjunctiva involvement
 c. Disfigurement should bone be excised (and not replaced)

2. Ocular motility abnormality
 a. Injury to muscles or their innervation
 b. Displacement of muscles, through bony defects or into space previously occupied by neoplasm
 c. Scarring with restriction to movement

3. Visual loss
 a. Orbital hemorrhage
 b. Direct injury to nerve
 i. Related to tumor involvement
 ii. Injury to blood supply to nerve
 iii. Excessive intraoperative retraction or pressure on optic nerve

4. Failure to achieve goals of surgery

V. List the complications of treatment, their prevention and management

A. Orbital hemorrhage
B. Motility disorder (mechanical or neurologic)
C. Ptosis
D. Facial sensory disturbance
E. Spread of tumor (local or distance metastasis)
F. Facial-orbital deformity
G. Visual loss
H. Corneal exposure
I. Secondary tumor, cataract, dry eye or retinopathy (chemotherapy or radiotherapy)
J. Change in refractive error

VI. Describe disease related complications

A. Orbital hemorrhage
B. Motility disorder (mechanical or neurologic)
C. Ptosis
D. Facial sensory disturbance
E. Spread of tumor (local or distance metastasis)
F. Facial-orbital deformity
G. Visual loss
H. Corneal exposure

VII. Describe appropriate patient instructions

A. Varies with type of lesion
B. Report progressive loss of function, new visual symptoms, and new systemic symptoms
C. Obtain appropriate ancillary consultation
D. Reinforce the necessity of adequate high quality radiographic imaging

Additional Resources

1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.
Orbital hemorrhage

I. Describe the approach to establishing the diagnosis

A. Describe the etiology of this disease
1. Traumatic
 a. Suspect coagulation abnormality if occurs with minor trauma
2. Anticoagulation
 a. May contribute to hemorrhage with surgery (blepharoplasty, orbital surgery)
3. Perioperative (e.g. retrobulbar injection)
4. Orbital vascular malformation
5. Neoplasm
6. Iatrogenic (sinus surgery and neurosurgery complication)

B. List the pertinent elements of the history
1. Sudden proptosis
2. History of trauma
3. Prior orbital or systemic disease
4. Pain
5. Diplopia
6. Acute decreased vision
7. Previous similar episodes
8. Abnormal bleeding diathesis

C. Describe pertinent clinical features
1. Painful or painless
2. Proptosis
3. Conjunctival hemorrhage
4. Signs of optic neuropathy
5. Strabismus
6. IOP is reflective of orbital pressure and should be monitored

D. Describe appropriate testing and evaluation for establishing the diagnosis
1. Diagnostic tools
 a. Computed Tomography
 i. Usually preferred with trauma
 b. Magnetic resonance imaging
 i. If neoplasm is suspected
 c. Serologic evaluation if coagulation disorder suspected

II. Define the risk factors

A. Trauma
B. Bleeding diathesis
C. Underlying orbital disease
D. Anticoagulation
E. Orbital vascular anomaly

III. List the differential diagnosis
A. Vascular malformations without hemorrhage
 1. Lymphangioma
 2. Venous malformations/varix
B. Orbital cellulitis
C. Air in orbit
D. Retained foreign body
E. CC fistula

IV. Describe patient management in terms of treatment and follow-up
A. Describe medical therapy options
 1. Observation
 2. Elevated intraocular pressure management
 3. Frequent re-evaluation
 4. Hospitalization may be indicated
 a. Close monitoring for progressive vision loss
 b. Expedited access to surgical facilities
B. Describe surgical therapy options
 1. Lateral canthotomy/cantholysis indication
 2. Urgent orbital decompression/drainage
 3. Surgical control of bleeding

V. List the complications of treatment, their prevention and management
A. Complications
 1. Related to orbital decompression
 a. Visual loss
 b. Enophthalmos or other orbital deformity
 c. Ocular misalignment
 d. Pupillary abnormalities
 2. Related to canthotomy/cantholysis
 a. Ectropion
 b. Scar formation
B. Prevention
 1. Early intervention to prevent consequences of elevated orbital pressure
 2. Appropriate observation for progression may require hospitalization
VI. Describe disease-related complications

A. Visual loss
 1. Optic neuropathy
 2. Central retinal artery occlusion

B. Ocular misalignment

C. Orbital ischemia/compartment syndrome/orbital infarction

D. Abnormalities related to underlying cause

VII. Describe appropriate patient instructions

A. Describe signs/symptoms of delayed postoperative hemorrhage

B. Emergent reconsultation for worsening pain, proptosis, ecchymosis, motility, or visual loss

Additional Resources

Orbital fractures

I. Describe the approach to establishing the diagnosis

A. Describe the etiology of this disease
 1. Blunt direct trauma
 a. Orbital rim fractures
 b. Medial wall fractures associated with blunt impact (blow in fracture)
 c. Tripod fractures
 d. Roof fractures
 e. Le Fort
 2. Indirect hydraulic blowout (e.g. medial wall and floor fractures,

B. Define the relevant aspects of epidemiology of the disease
 1. High prevalence in young men

C. List the pertinent elements of the history
 1. Diplopia
 2. Hypoesthesia of cheek and upper teeth
 3. Pain with eye movement
 4. Malocclusion (of teeth)
 5. Pain with jaw movement
 6. Vision loss
 7. Pediatric (trapdoor fractures/white-eyed blowout fracture)
 a. Pain with eye movement
 b. Nausea
 c. Vasovagal symptoms (e.g. bradycardia)
 d. Visual loss due to injury to the eye (various mechanisms) or optic nerve
 e. Diplopia

D. Describe pertinent clinical features
 1. Globe dystopia
 2. Exophthalmos (from edema/hemorrhage/emphysema)
 3. Enophthalmos
 4. Abnormal ocular motility
 5. Sensory hypoesthesia
 6. Facial deformity
 a. Orbital rim step-off
 b. Depression of the malar eminence
 7. Orbital emphysema
 8. Bony sinus opacity
 9. Associated injuries
 a. AV fistulas (e.g. carotid cavernous fistula)
b. Ocular trauma

c. Head injury/cerebrospinal fluid (CSF) leak (especially roof fractures)

d. Trismus, jaw malocclusion

E. Describe appropriate testing and evaluation for establishing the diagnosis

1. Role of computed tomography (CT), axial/coronal images

2. Motility testing

3. Forcedduction testing

4. Recognition of concurrent skull base fractures, trimalar fractures, jaw malocclusions

5. IOP to assess orbital pressure (may be elevated with hemorrhage)

F. Anatomy of orbital bones

1. Clinically relevant dimensions

 a. Globe to canal: 18mm

 b. Optic nerve: 25mm+

 c. The length of the optic nerve allows for ocular motility and explains why optic nerve stretch is not encountered with small degrees of proptosis

2. Orbital roof

 a. Injury may occur in conjunction with injury of the following structures and their contents

 i. Landmarks

 i) Lacrimal gland fossa

 ii) Superior oblique tendon

 iii) Supraorbital notch or foramen

 ii. Adjacent structures

 i) Frontal sinus

 ii) Anterior cranial fossa

3. Lateral orbital wall

 a. Injury may occur in conjunction with injury of the following structures and their contents

 i. Landmarks

 i) Lateral orbital tubercle

 ii. Adjacent structures

 i) Middle cranial fossa

 ii) Temporalis fossa

4. Orbital floor

 a. Injury may occur in conjunction with injury of the following structures and their contents

 i. Landmarks within the orbit floor

 i) Infraorbital groove, canal, foramen

 ii. Adjacent structures

 i) Maxillary sinus

5. Medial orbital wall

 a. Injury may occur in conjunction with injury of the following structures and their contents

 i. Landmarks

 i) Ethmoid arteries: anterior and posterior

 ii) Cribriform plate: level of frontoethmoid suture
ii. Adjacent structures
 i) Ethmoid and sphenoid sinuses
 ii) Nasal cavity

II. Define the risk factors

A. Trauma (direct or indirect)
B. Muscle entrapment/significant diplopia in primary gaze
C. Muscle ischemia in trapdoor fractures
D. Enophthalmos with large fractures
E. Jaw malocclusion in trimalar fractures
F. Midface instability in Le-Forte fractures

III. List the differential diagnosis

A. Diplopia
 1. Mechanic
 a. Soft tissue edema/ hemorrhage
 2. Paretic
 a. Traumatic cranial neuropathy
 3. Muscle entrapment/malposition
 a. Entrapped muscle
 b. Displaced muscle
 c. Severe globe malposition (enophthalmos)
 4. Traumatic carotid-cavernous fistula

IV. Describe patient management in terms of treatment and follow-up

A. Describe surgical therapy options
 1. Indications
 a. Enophthalmos with large fractures
 i. More likely to develop if greater than 50% of the orbital floor is involved
 ii. Dependent on degree of soft tissue prolapse through the fracture
 b. Diplopia
 i. When persists with prolonged observation
 ii. Urgent repair is indicated for abnormal motility in the setting of a trapdoor fracture
 c. Timing of repair
 i. Trapdoor fractures with muscle entrapment should be repaired urgently
 ii. The best time to repair of comminuted fractures is controversial- immediate vs observation for 7-14 days
 2. Repair of fracture with repositioning of entrapped tissue
 a. May not solve motility problem
 3. Strabismus surgery for persistent diplopia after fracture repair
V. List the complications of treatment, their prevention and management

A. Complications
 1. Eyelid deformity
 2. Implant migration
 3. Ocular misalignment
 4. Extraocular muscle damage
 5. Visual loss
 6. Chronic sinusitis
 7. Orbital hemorrhage (compartment syndrome)
 8. Hypoesthesia
 9. Abnormal pupil/accommodation loss
 10. Infected implant

VI. Describe disease-related complications

A. Late enophthalmos
B. Persistent restrictive strabismus
C. Sinus disease
D. Jaw malocclusion
E. Hypoesthesia
F. CSF leak

VII. Describe appropriate patient instructions

A. Discussion of postoperative anticipated temporary worsening
B. Describe long term risks
C. Describe signs/symptoms of sinus infection
D. Describe signs/symptoms of postoperative hemorrhage
E. Emergent reconsultation for worsening motility, visual loss, or pain

Additional Resources
1. AAO, Basic and Clinical Science Course. Section 7: Orbit, Eyelids, and Lacrimal System, 2015-2016.
Approach to anisocoria

I. Describe the approach to establishing the diagnosis

A. Describe the etiology of this disease

1. Characterized by inequality in the diameter size of the 2 pupils
 a. Disruption of the oculosympathetic pathway
 b. Parasympathetic dysfunction in or distal to the ciliary ganglion causing diminished pupillary constriction
 c. Pharmacologic
 d. Dysfunction of the parasympathetic fibers of the cranial nerve (CN) III causing the pupil to be larger and poorly reactive
 e. Physiologic (essential)
 f. Local pupil /iris abnormality

B. List the pertinent elements of the history

1. Physiologic or essential anisocoria
 a. Onset
 b. Variability

2. Anisocoria secondary to Horner
 a. Presence of pain, neck pain or headache especially, in setting of trauma
 b. Recent neck trauma or manipulation
 c. Other neurologic symptoms to suggest brainstem localization in central first order disease
 d. Pulmonary or shoulder symptoms in second order disease
 e. Headache syndrome suggestive of cluster
 f. If associated with amaurosis fugax, assess for an ipsilateral carotid artery dissection.

3. Anisocoria secondary to Adie
 a. Onset
 b. Blurred near vision

4. Anisocoria secondary to third nerve palsy
 a. Droopy eyelid
 b. Oblique/horizontal diplopia
 c. Headache or orbital pain

5. Pharmacologic mydriasis
 a. Exposure to systemic medications, drops or other agents that may cause a dilated pupil
 b. Occupational history

C. Define the relevant aspects of epidemiology of this disease

1. Physiologic or Essential Anisocoria
 a. Approximately 20% of individuals have > 0.4 mm anisocoria
 b. The amount of anisocoria and laterality of anisocoria can be variable, but is usually not greater than 1 mm
 c. More apparent with advancing age

2. Pupil-involving CN III palsies occur in the following settings
a. Compression (aneurysm or tumor)
 i. Especially posterior communicating aneurysm
b. Severe head trauma
c. Microvascular ischemia in patients with vasculopathic risk factors, although typically these are not pupil involving
d. Other inflammatory, infiltrative and infectious causes
3. Horner
 a. Congenital
 b. Early acquired (rule out neuroblastoma)
c. Young adult with syndrome of carotid dissection associated with minor trauma
d. Presenting as apical chest tumor in patient with risk factors for cancer
e. Idiopathic: no identifiable cause in majority
f. Incidence typically increases with advancing age
4. Adie
 a. Almost all cases are idiopathic
 b. Majority of patients are females
5. Pharmacologic
 a. Intentional or accidental exposure

D. Describe pertinent clinical examination approach
1. Step 1 - Measure degree of anisocoria
2. Step 2 - Perform a slit lamp biomicroscopic examination to determine the presence of local structural factors as possible cause of the anisocoria
 a. Determine if there are iris sphincter tears
 b. Determine if there are pupillary synechiae
 c. Look for iris retroillumination defects, or areas of iris atrophy
 d. Look for sluggish, segmental pupillary response (vermiform movements)
 e. Gonioscopy as indicated
3. Step 3 - If a local structural factor is not identified then, examine the patient in bright and dim illumination
 a. If relative anisocoria remains the same in bright and dim lighting then, it represents physiologic or essential anisocoria
 i. Benign condition characterized by inequality in the diameter size of the 2 pupils (usually less than 1 mm)
 b. Both pupils react well to direct light
 c. Both pupils dilate in the dark
 d. Both pupils react well to near
 e. Absence of other neurologic/eye signs or symptoms
 i. Normal eyelid examination
 ii. Normal motility examination
4. Step 4 - If the anisocoria is greater in dim illumination, then the miotic pupil is the abnormal pupil; and, work up for Horner syndrome is necessary (See Horner syndrome)
 a. Efferent, sympathetic mediated usually mild paralytic ptosis of upper eyelid
 b. Efferent, sympathetic mediated usually very mild paralytic reverse ptosis of lower eyelid, causing eyelid position to be higher than other side
 c. Variable lack of or diminished sweating (anhidrosis) on side of smaller pupil, especially in more
central lesions
d. Lighter iris color on side of smaller pupil in congenital Horner syndrome

5. Step 5 - If the anisocoria is greater in bright illumination then the mydriatic or larger pupil is abnormal, and the clinician must consider:
 a. Adie (See Adie pupil)
 i. Light-near dissociation
 ii. On refixation from near to distance, pupil redilation is slow (tonic)
 iii. Sectoral palsy of the pupillary sphincter
 iv. Vermiform movements at slit-lamp biomicroscope
 v. Atrophy of pupillary ruff with time
 vi. In Adie syndrome, decreased deep tendon reflexes
 vii. Decreased near vision unless preexisting presbyopia
 viii. Over time, mydriasis decreases but reactivity does not recover
 b. Third nerve palsy
 i. Pupillary dilation almost always accompanied by ptosis and limited ocular motility
 ii. Poor or no reaction of pupil to light
 iii. Mid-dilated (not widely dilated) size is typical
 iv. No light-near dissociation, i.e., poor near reaction as well
 v. Paradoxical movements (constriction of pupil with adduction or depression of eye) suggest aberrant regeneration of CN III (always from either compressive lesion or previous trauma)
 vi. Decreased accommodation and subsequent difficulty with near vision (symptomatic if pre-presbyopic)
 vii. Ptosis (incomplete or complete)
 viii. Isolated pupillary dilation
 i) In an awake adult patient is never a manifestation of CN III palsy
 ii) In a comatose patient may be due to uncal herniation, if ocular motility and eyelid position cannot be assessed
 c. Pharmacologic mydriasis (See Pharmacologic mydriasis)
 i. Isolated pupillary mydriasis
 ii. No light or near response (anisocoria worse in light)
 iii. Often widely dilated (> 7 mm)
 iv. No ptosis
 v. Normal motility

E. Describe appropriate testing and evaluation for establishing the diagnosis

1. Horner Syndrome (See Horner syndrome)
 a. Pharmacologic testing with cocaine (4% or 10%), hydroxyamphetamine (1%), and apraclonidine (0.5% or 1%)
 b. Imaging (Brain, neck, carotid and/or chest)
 c. Acquired childhood Horner needs evaluation for neuroblastoma (abdominal imaging and urine catecholamines)

2. Adie Syndrome (See Adie pupil)
 a. Dilute pilocarpine testing

3. Patients with a large pupil due to aneurysmal compression of pupillomotor fibers of CN III require an urgent referral
II. List the differential diagnosis

A. Adie tonic pupil
B. Horner syndrome
C. Cranial nerve (CN) III palsy
D. Pharmacologic mydriasis/miosis
E. Benign episodic pupillary mydriasis (may occur in patients with history of headaches)
F. Previous globe/iris trauma
G. Iris coloboma or other structural abnormality
H. Diabetic tonic pupil (symmetric or asymmetric)

III. Describe patient management in terms of treatment and follow-up

A. Medical therapy
 1. Determined based on etiology of the anisocoria
 2. All patients need a comprehensive eye examination with measurement of pupillary light responses in dim and bright illumination as discussed above
 3. Review of old photographs may be helpful
 4. Pharmacological testing, if indicated, to rule out other diagnoses
 5. Imaging, when appropriate

IV. Describe appropriate patient instructions

A. Etiology specific
 1. Physiologic anisocoria
 a. Reassurance
 b. Report any new symptoms - diplopia, ptosis
 2. Adie pupil
 a. Reassurance
 b. Report new neurologic symptoms
 c. Tonic pupil may become smaller over months to years
 d. If necessary, appropriate refractive correction for near work
 e. Instillation of dilute pilocarpine to help symptomatic photosensitivity and accommodative difficulties
 f. Colored contact lenses
 3. Anisocoria secondary to third nerve palsy
 a. Failure to resolve or development of aberrant regeneration findings requires further evaluation
 b. Reassurance, if negative emergent work-up
c. If necessary, appropriate refractive correction for near work
d. Instillation of pilocarpine to help symptomatic photosensitivity and accommodative difficulties
e. Colored contact lenses
f. Follow-up clinical examination

4. Horner syndrome
 a. Etiology specific
 b. Report new neurologic symptoms

5. Pharmacologic mydriasis
 a. Reassurance
 b. Observation, expect resolution without development of any other evidence of CN III palsy

Additional Resources

1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.
A. Cranial nerve (CN) III palsy (always accompanied by some degree ophthalmoplegia plus/minus ptosis)
B. Tonic pupil
C. Widespread dysautonomia
D. Previous iritis/primary or secondary iris pathology/traumatic mydriasis
E. Diabetes mellitus
 1. Autonomic pupillary dysfunction
 2. Previous panretinal photocoagulation

IV. Describe appropriate patient instructions
 A. Reassurance
 B. Observation, expect resolution without development of any other evidence of CN III palsy

Additional Resources
 1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.
I. Describe the approach to establishing the diagnosis

A. Describe the etiology of this disease
 1. Instillation into eye of anticholinergic (atropine-like) substance may cause unilateral or bilateral mydriasis
 2. Systemic medications such as sympathomimetics and parasympatholytics may cause bilateral mydriasis

B. Define the relevant elements of the epidemiology of this disease
 1. Intentional or accidental exposure

C. List pertinent elements of history
 1. Try to identify exposure (medications or other chemicals)
 a. Handling red top eye drops
 b. Use of scopolamine patch
 c. Previous treatment for iritis
 d. Visit to the emergency room (ER)
 e. Exposure to botanicals and anticholinergics
 f. After cardiopulmonary resuscitation
 g. Occupational access to mydriatic agents (e.g. nurses, medical students)
 2. Blurred near vision
 3. No ptosis
 4. No double vision

D. Describe pertinent clinical features
 1. Isolated pupillary mydriasis and abnormal accommodation
 2. No light or near response (anisocoria worse in light)
 3. Often widely dilated (> 7 mm)
 4. No ptosis
 5. Normal motility

E. Describe appropriate testing and evaluation for establishing the diagnosis
 1. Pharmacologic dilation does not respond to 1% pilocarpine unless performed near the termination of the pharmacologic blockade, in which case there is incomplete constriction of affected pupil

II. Define the risk factors

A. Handling anticholinergic medication
B. Scopolamine patches for nausea
C. Handling foliage
D. Handling of tick and flea pesticide products
E. Secondary gain (intentional instillation)
F. Previous episodes of functional medical problems

III. List the differential diagnosis

Pharmacologic mydriasis
Horner syndrome

I. Describe the approach to establishing the diagnosis

A. Describe the etiology of this disease
 1. Disruption of the oculosympathetic pathway
 a. First order neuron
 i. Central disorders of the nervous system or cervical disease associated with other defects
 b. Second order neuron
 i. Apical lung tumors (Pancoast syndrome)
 ii. Neck mass
 iii. Chest surgery
 iv. Brachial plexus trauma
 c. Third order neuron
 i. Carotid artery dissection
 ii. Cavernous sinus tumors

B. Define the relevant elements of the epidemiology of this disease
 1. Idiopathic
 a. No identifiable cause in majority of third order (post ganglionic)
 2. Secondary
 a. Etiology determined with appropriate use of imaging
 3. Age dependent difference in the diagnosis of Horner

C. List the pertinent elements of the history
 1. Different sizes of both pupils- smaller pupil
 2. Drooping of upper eyelid
 3. Lower eyelid higher than other side (upside down ptosis)
 4. Lack of facial sweating ipsilateral to smaller pupil
 5. Lighter iris color on side of smaller pupil (congenital Horner)
 6. Presence of facial pain, neck pain or headache, especially in setting of trauma
 7. Recent neck trauma or manipulation
 8. Other neurologic symptoms to suggest brainstem localization
 9. Pulmonary or shoulder symptoms
 10. Headache syndrome suggestive of cluster
 11. Diplopia

D. Describe pertinent clinical features
 1. Classic triad of ipsilateral ptosis, miosis and anhidrosis
 a. Anisocoria greater in dim light with the affected pupil being smaller
 b. Affected pupil demonstrates dilation lag
 i. Anisocoria worse immediately after turning off lights than when reassessed after a delay
 2. Light and near pupillary reactions are intact
3. Ptosis of upper eyelid (1-2 mm)
4. "Upside down" ptosis of lower eyelid (lower eyelid rising)
5. Anhidrosis of ipsilateral face/forehead
6. Conjunctival injection - loss of sympathetic vasomotor tone
7. Involvement of CN III, IV, V or VI localizing lesion to cavernous sinus
8. Congenital form usually due to birth trauma to brachial plexus
9. Iris heterochromia with the affected iris being lighter in color in congenital Horner

E. Clinically relevant anatomic correlations
1. Sympathetic activity originates in the posterior region of the hypothalamus
2. Sympathetic fibers destined for the orbit for 3 neuron chain: 1st, 2nd, and 3rd order neurons
 a. First order neuron
 i. Originates in Posterior Hypothalamus
 ii. Descends through brainstem to spinal cord
 iii. Within the spinal cord sympathetic fibers synapse and exit from C8 to T2 level
 b. Second order neuron
 i. Exits spinal cord from C8 to T2: can be involved in brachial plexus injury in this region
 ii. Sympathetic chain passes just above the lung apex: can be affected by Pancoast (apical lung) tumor in this location
 iii. Ascends to synapse in the superior cervical ganglion
 c. Third order neuron
 i. Postganglionic third-order fibers continue in the wall of the internal carotid: can be affected in carotid artery dissection
 ii. In the posterior cavernous sinus, sympathetic fibers destined for the pupillary dilator leave the carotid artery and join CN 6: therefore, a concurrent Horner and ipsilateral 6th nerve palsy localizes the process to the cavernous sinus
 iii. In the anterior cavernous sinus, the sympathetic fibers join the ophthalmic division of the trigeminal nerve
 iv. In the orbit, the fibers pass through the ciliary ganglion (without synapsing) and travel with the long ciliary nerves to reach the pupillary dilator
 v. Fibers destined for the Müller's muscle travel along the ophthalmic artery and subsequent branches

F. Describe appropriate testing and evaluation for establishing the diagnosis
1. Cocaine testing: blocks the re-uptake of norepinephrine
 a. Confirm presence of Horner syndrome
 b. Normal pupil will dilate; affected pupil dilates poorly or not at all
2. Hydroxyamphetamine testing: releases norepinephrine from presynaptic terminal
 a. Differentiate between a pre or postganglionic lesion
 b. Normal pupil will dilate and affected pupil will not dilate in postganglionic lesion (3rd order Horner)
 c. Normal and affected pupil will dilate in preganglionic lesion
3. Apraclonidine testing: apraclonidine effect on pupillary dilator muscle is amplified by denervation hypersensitivity secondary to the upregulated postsynaptic alpha receptors
 a. Reversal of anisocoria is interpreted as a positive test. The miotic pupil dilates, and the normal pupil constricts a little
4. Imaging
 a. Brain, neck, carotid and/or chest
II. **Define the risk factors**
 A. Recent history of neck trauma/surgery
 B. Recent history of chest trauma/surgery, central line placement
 C. History of lung cancer
 D. Congenital due to birth trauma to the brachial plexus and acquired in childhood raises possibility of neuroblastoma
 E. Acute carotid dissection

III. **List the differential diagnosis**
 A. Physiologic (essential) anisocoria with unrelated ptosis
 B. Adie pupil
 C. Pharmacological mydriasis/miosis
 D. Argyll Robertson pupil

IV. **Describe patient management**
 A. Describe medical therapy options
 1. Determined by etiology of syndrome
 2. Acute management of carotid dissection since stroke is a possible complication
 3. Cluster headache/migraine management
 4. Stroke management when recognized
 5. Tumor management when recognized
 6. Apraclonidine drops can be used to reverse ptosis
 B. Describe surgical therapy options
 1. Consideration of ptosis surgery

V. **Describe appropriate patient instructions**
 A. Etiology specific
 B. Report new neurologic or visual symptoms

Additional Resources
 1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.
Adie pupil

I. Describe the approach to establishing the diagnosis

A. Describe the etiology of the disease
 1. Parasympathetic dysfunction in or distal to ciliary ganglion causing diminished pupillary constriction to light

B. List the pertinent elements of the history
 1. Large pupil with patient occasionally complaining of light sensitivity
 2. Decreased near vision
 3. No diplopia or ptosis

C. Define the relevant elements of the epidemiology of this disease
 1. Almost all cases are idiopathic
 2. Majority of patients are females

D. Describe pertinent clinical features
 1. Large pupil
 2. Anisocoria is greatest in light
 3. Pupillary light-near dissociation
 4. Tonic near response
 a. Pupil constricts with near effort, slowly
 b. Pupillary redilation and accommodation are tonic upon resuming distance fixation
 c. Thus, involved pupil may be a small pupil if patient was reading prior to examination
 5. Sectoral palsy of the pupillary sphincter
 a. Vermiform movements at slit-lamp biomicroscope
 b. Atrophy of pupillary ruff with time
 6. Adie syndrome is combination of tonic pupil and decreased deep tendon reflexes
 7. Decreased near vision unless preexisting presbyopia
 8. Over time, mydriasis decreases but reactivity does not recover

E. Clinically relevant anatomic correlations
 1. Adie tonic pupil arises from damage to the postsynaptic parasympathetic fibers arising from the ciliary ganglion
 2. There are a significantly greater number of fibers associated with accommodation innervating the ciliary body as compared to fibers destined for the pupillary sphincter
 a. This preponderance of accommodative fibers may be one of the reasons for development of light-near dissociation after aberrant regeneration of the postsynaptic accommodative fibers to the pupillary sphincter
 3. The postsynaptic parasympathetic fibers travel with the nerve to the inferior oblique muscle to join the posterior ciliary nerves to reach the pupillary sphincter

F. Describe appropriate testing and evaluation for establishing the diagnosis
 1. Dilute pilocarpine testing
 a. Denervation supersensitivity -- dilute pilocarpine constricts pupil
 b. Test will be negative acutely as denervation supersensitivity may take several days to develop
II. Define the risk factors
 A. The presence of a contralateral Adie pupil
 B. Systemic dysautonomias
 C. Other neurologic disorders (rare)

III. List the differential diagnosis
 A. Essential anisocoria
 B. Horner syndrome (contralateral eye)
 C. Dorsal midbrain syndrome (differentiate from bilateral Adie pupil)
 D. Pharmacological mydriasis/miosis
 E. Widespread (systemic dysautonomia)
 F. Diabetes mellitus
 1. Autonomic pupillary dysfunction
 2. Previous panretinal photocoagulation
 G. Cranial nerve (CN) III palsy
 H. Iris atrophy
 I. Tonic pupils (non-idiopathic)
 1. Recent history of orbit trauma/surgery
 2. Panretinal photocoagulation (PRP)

IV. Describe patient management
 A. Dilute Pilocarpine for miosis if light sensitive
 B. Reading prescription for near vision may be asymmetric (stronger on Adie side)
 C. Tinted lens

V. Describe appropriate patient instructions
 A. Reassurance
 B. Report any double vision or ptosis
 C. Tonic pupil may become smaller over months to years

Additional Resources
 1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.
Relative afferent pupillary defect

I. Describe the approach to establishing the diagnosis

A. Describe etiology of the disease
 1. Hallmark of unilateral or asymmetric optic nerve disease
 a. Relative difference in midbrain light input because of unilateral or asymmetric optic nerve dysfunction results in difference of pupillary light response between direct and consensual light reflex
 2. Large macular lesions or other extensive retinal disorders (e.g., retinal detachment)
 3. Asymmetric chiasmal disease
 4. Optic tract or lateral geniculate lesions
 5. Optic tract lesions may result in a relative afferent pupillary defect in the contralateral eye (i.e., the eye with the temporal visual field loss).
 6. Amblyopia (usually low magnitude APD)

B. Define the relevant elements of the epidemiology of this disease
 1. Specific for each optic nerve disorder

C. List the pertinent aspects of the history
 1. Specific for each optic nerve disorder
 2. Complaints of decreased vision may be present, highlighted by:
 a. Reduced brightness sense
 b. Diminished color vision
 c. Visual field loss

D. Describe pertinent clinical features
 1. This is best demonstrated by the swinging flashlight test in which pupillary escape or early redilation (of either pupil) is demonstrated when a light is brought to the eye with the afferent defect and constriction (of either pupil) occurs when the light is returned to the "good" eye

E. Clinically relevant anatomic correlations
 1. Afferent limb of pupillary light reflex
 a. Optic nerve
 b. Hemidecussation of fibers at optic chiasm
 c. Optic tract: pupillary tract fibers leave optic tract in the brachium of the superior colliculus just prior to the lateral geniculate nucleus
 d. Pretectal nucleus
 e. Bilateral Edinger-Westphal nuclei
 i. Ipsilateral
 ii. Contralateral via posterior commissure
 2. Efferent limb of pupillary light reflex
 a. Edinger-Westphal nucleus (part of CN III nuclear complex in midbrain)
 b. CN III (pupil fibers run in the medial superficial surface)
 c. Inferior division of CN III
 d. Ciliary ganglion (synapse)
 e. Postsynaptic fibers travel with the nerve to the inferior oblique
f. Posterior ciliary nerves
g. Pupillary sphincter muscle

F. Describe appropriate testing and evaluation for establishing the diagnosis

1. Swinging flashlight test
 a. The affected eye's pupillary response is less brisk than the unaffected eye

2. Quantification with neutral density filters
 a. Neutral density filters are placed in front of the "good" eye and the swinging flashlight test is performed. Increasing amounts of neutral density filters are added until the RAPD is no longer observed with the swinging flashlight test

3. A relative afferent defect can still be detected in the presence of a unilateral efferent defect (i.e., in an immobile or obscured pupil) by comparing the consensual pupillary response from contralateral light stimulation to the direct pupillary response from ipsilateral light stimulation

II. Define the risk factors

A. The magnitude of the RAPD correlates well with the degree of visual field loss but does not with the loss of visual acuity.

III. List the differential diagnosis

A. Unilateral or asymmetrical optic nerve disease
B. Severe retinal disease
C. Asymmetric chiasmal disease
D. optic tract syndrome
E. Occasionally seen with amblyopia

Additional Resources

1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.
2. AAO, Optic Nerve Disorders, 1996; 44,56,126,186.
Thromboembolic phenomena

I. Describe the approach to establishing the diagnosis

A. Describe the etiology of this disease

1. Atherosclerotic disease
 a. Carotid - plaque
 b. Cardiac - valvular or mural thrombus
 c. Aortic arch disease

2. Hypercoagulable states (genetic vs acquired)

3. Other
 a. Surgery
 b. Venous stasis
 c. Right-to-left cardiac shunt/atrial septal aneurysm
 d. Intravenous drug use

B. Define the relevant aspects of epidemiology of the disease

1. Family history of thrombosis

2. Previous episodes of thrombosis in other territory

C. List the pertinent elements of the history

1. Acute neurologic deficit or visual loss

2. Monocular visual loss suggests ocular ischemia

3. Binocular visual loss or homonymous visual field defect, suggests retrochiasmal ischemia in carotid or vertebrobasilar territory
 a. with vertebrobasilar territory, may have other symptoms related to posterior circulation deficit - such as dizziness or diplopia

D. Describe appropriate testing and evaluation for establishing the diagnosis

1. Extent of laboratory work-up varies with patient's clinical presentations (venous vs arterial thrombosis), site of thrombosis (large vs. small vessel), patient's characteristics and family history

2. Referral to appropriate medical specialist for evaluation and treatment of any underlying disorders and diseases

II. Define the risk factors

A. Family history of thrombosis

B. Personal history of thrombosis

C. Pregnancy or postpartum state

D. Oral contraceptives

E. Smoking

F. Surgery, trauma, travel

G. Advancing age

H. Hyperlipidemia

I. Diabetes

J. Hypertension
K. Intravenous drug use
L. Hematologic diseases predisposing to thromboembolism

III. List the differential diagnosis
A. Other causes of vascular disease (embolic, vasculitis, atheroma, etc.)

IV. Describe patient management in terms of treatment and follow-up
A. Describe medical therapy options
 1. Anticoagulants vs antiplatelets
 2. Short term or prolonged
 3. Depends on the type of thrombosis and work-up
 4. Prevention of pulmonary embolism
 5. Discontinue oral contraceptive
 6. Prevention of thrombosis during pregnancy or postpartum state
 7. Smoking cessation
 8. Treat hyperlipidemia
 9. Control diabetes
 10. Control hypertension
B. Describe surgical therapy options
 1. Clot lysis in situ (endovascular approach)
 2. Treat underlying cardiac disorder - dysrhythmia, mural thrombus, valvular disease
 3. Consider carotid endarterectomy in cases of significant ipsilateral carotid stenosis
 4. Prevention of pulmonary embolism depending on site of clot

V. List the complications of treatment, their prevention and management
A. Complications of anticoagulants and antiplatelets
B. Complications of intravascular surgery (e.g. stroke, death)

VI. Describe disease-related complications
A. Propagation of clot
B. Recurrent thrombosis
C. Pulmonary embolism

VII. Describe appropriate patient instructions
A. Risk factor modification
B. Genetic counseling where appropriate

Additional Resources
1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.
Cerebrovascular disease/stroke

I. Describe the approach to establishing the diagnosis

A. Describe the etiology of this disease
 1. Ischemic (embolic, thrombotic or hypoperfusion) vs. hemorrhagic (intraparenchymal, subarachnoid, subdural)
 2. Arterial vs. venous -

B. Define the relevant aspects of epidemiology of the disease
 1. Typically, an elderly patient with atheromatous disease, cardiac disease, or atrial fibrillation
 2. In young patients, suspect arterial dissection or coagulopathy

C. List the pertinent elements of the history
 1. Acute neurologic deficit or visual loss
 a. Patients with posterior ischemic cerebrovascular accident (CVA) may only have visual field loss and may not be acutely aware of visual field defect
 2. If monocular visual loss, suggests ocular ischemia in the ipsilateral carotid territory
 3. If binocular visual loss or homonymous hemifield defect, suggests retrochiasmal lesion either in carotid or vertebrobasilar territory
 4. Headache common in hemorrhagic stroke
 5. Headache also common if arterial dissection, vertebrobasilar infarction or venous disease
 6. Blood pressure, palpitations
 7. consider giant cell arteritis in the elderly
 8. Facial pain or trauma with dissection

D. Blood supply of the brain
 1. Anterior (carotid circulation)
 a. Anterior visual pathway and optic radiations
 2. Posterior (vertebral circulation)
 a. Posterior visual pathway and occipital cortex
 b. Brainstem (including cranial nerve nuclei)
 3. Collateral circulation
 a. Circle of Willis

E. Describe appropriate testing and evaluation for establishing the diagnosis
 1. If retinal ischemia
 a. Dilated fundus examination looking for emboli
 b. Fluorescein angiography
 c. Optical coherence tomography of the macula (thickening and hyperreflectivity in acute stage and thinning in late stage)
 2. Consider CT, CTA, MRI with diffusion weighted images (DWI), or MRA
 3. Carotid and vertebral ultrasonography and transcranial Doppler are very helpful but are not adequate to definitively rule out disease
 4. Conventional angiography only obtained preoperatively or in special circumstances to be determined by stroke neurologist
 5. Cardiac evaluation, electrocardiogram, event monitor/Holter monitor
6. Transesophageal echocardiogram for cardiac and proximal large vessel atheroma, valvular disease or intracardiac clot
7. Evaluate for cardiovascular risk factors
8. Assess for giant cell arteritis if elderly (especially with amaurosis fugax)
 a. Erythrocyte sedimentation rate
 b. C-reactive protein
 c. Complete blood count, platelet evaluation
 d. Possible temporal artery biopsy
9. Assess for ocular ischemic syndrome if severe carotid occlusive disease
 a. Mid peripheral dot-and-blot retinal hemorrhages
 b. Ocular hypotension
 c. Anterior chamber cells
 d. Rubeosis
 e. Corneal edema

II. Define the risk factors
A. Atheroma is most common cause of cerebrovascular disease
 1. Age
 2. Systemic hypertension
 3. Tobacco
 4. Dyslipidemia
 5. Diabetes mellitus
 6. Obesity
B. Cardiac disease
 1. Embolic disease
 2. Dysrhythmia
C. Hypercoagulable states

III. List the differential diagnosis
A. Any acute or fluctuating neurologic disease (multiple sclerosis, migraine, seizures)
B. If transient monocular visual loss presumed of vascular mechanism, transient visual obscurations from:
 1. Optic nerve head anomalies
 2. Orbital tumors
 3. Subacute angle closure glaucoma
 4. Dry eye syndrome
 5. Hyphema (rare)

IV. Describe patient management in terms of treatment and follow-up
A. Describe medical therapy options
 1. Consult appropriate medical specialist regarding anticoagulation, antiplatelets, thrombolysis, secondary prevention, risk factor modification
B. Describe surgical therapy options
 1. Carotid endarterectomy
 2. Carotid or vertebral angioplasty/stenting
 3. Vena Caval filters

V. List the complications of treatment, their prevention and management
 A. Thrombolysis, anticoagulants and antiplatelet agents
 1. Bleeding
 B. Surgery
 1. Directly related surgical complications
 2. CVA
 3. Myocardial infarction

VI. Describe disease-related complications
 A. Other localization of atheroma (coronary artery disease), peripheral vascular disease
 B. Blindness if ocular stroke
 C. Ocular ischemic syndrome

VII. Describe appropriate patient instructions
 A. Secondary prevention
 B. Referral to stroke neurologist
 C. Consult if transient ischemic attacks/transient visual loss

Additional Resources
 1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.
Cerebral aneurysms

I. Describe the approach to establishing the diagnosis

A. Describe the etiology of this disease
 1. Defects in arterial wall
 2. Congenital predisposition, but aneurysms are acquired lesions

B. Define the relevant aspects of epidemiology of the disease
 1. Most common in middle aged females
 2. May present with neuro-ophthalmic symptoms and signs alone or in combination with other neurological symptoms
 3. Risk of rupture varies depending on age, size of aneurysm, location, family history and clinical presentation
 a. Risk to be estimated by neurosurgeon/neurologist/interventional neuroradiologist with expertise with aneurysms

C. List the pertinent elements of the history
 1. Sudden headache suggesting subarachnoid hemorrhage
 2. Diplopia - cranial nerve (CN) palsies
 a. CN III pupil involving palsy classic for posterior communicating, posterior cerebral or superior cerebellar artery aneurysm
 b. CN IV, VI - cavernous sinus aneurysm
 c. CN IV - rare with subarachnoid aneurysm
 3. Visual loss may occur if there is compression of visual pathway

D. Describe appropriate testing and evaluation for establishing the diagnosis
 1. Computerized tomography (CT) without contrast to diagnose subarachnoid hemorrhage
 2. Lumbar puncture to confirm subarachnoid hemorrhage if not seen on scan
 3. May be seen on head CT or magnetic resonance imaging with contrast
 4. Magnetic resonance angiography (MRA) and computerized tomographic angiography (CTA) often helpful, sometimes in combination
 5. Conventional catheter angiography remains the gold standard
 a. To be obtained if MRA and/or CTA negative and clinical suspicion high
 b. Done at the time of treatment if endovascular treatment planned and MRA or CTA positive

II. Define the risk factors

A. Family history
B. Trauma (dissection)
C. Polycystic kidney disease
D. Elastic tissue disease (e.g. Ehlers Danlos)

III. List the differential diagnosis

A. All causes of headache
B. All causes of CN palsies
C. All causes of optic neuropathies
D. Other causes of homonymous hemianopia (e.g. migraine)

IV. Describe patient management in terms of treatment and follow-up

A. Describe medical therapy options
 1. Treat symptom (diplopia, headache)
 2. Management of subarachnoid hemorrhage, vasospasm
 3. Recognize Terson syndrome if subarachnoid hemorrhage
 4. Genetic counseling
 5. Monitor afferent and efferent vision abnormalities

B. Describe surgical therapy options
 1. Endovascular treatment (e.g. coils)
 2. Surgical clipping

V. List the complications of treatment, their prevention and management

A. Aneurysmal rupture
B. Stroke
C. Cranial nerve compression (diplopia, optic neuropathy)
D. Visual field defect
E. Recurrence (incomplete occlusion)
F. Death

VI. Describe disease-related complications

A. Rupture with devastating subarachnoid hemorrhage
B. Terson syndrome if rupture
C. Vasospasm with ischemic stroke
D. Neurocompression (cranial nerves, brain parenchyma) if unruptured
E. Pain, headache
F. Death

VII. Describe appropriate patient instructions

A. Genetic counseling in familial aneurysms
B. Precautions if aneurysm left untreated (risk of rupture with Valsalva, trauma)

Additional Resources

1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.
Dissecting aneurysms

I. Describe the approach to establishing the diagnosis
 A. Describe the etiology of this disease
 1. Trauma (neck injury, cervical manipulation, etc.)
 2. Elastic tissue disease (Ehlers Danlos syndrome, Marfan syndrome, fibromuscular dysplasia)
 B. Define the relevant aspects of the epidemiology of the disease
 1. common cause of ischemic stroke in young patients
 C. List the pertinent elements of the history
 1. Sequence of "trauma - pain - stroke" is highly suggestive
 2. Painful postganglionic Horner syndrome or Horner with amaurosis fugax are suggestive of carotid dissection
 3. Alterations in taste sensation (lower cranial nerve dysfunction)
 4. Facial and/or neck pain
 D. Describe appropriate testing and evaluation for establishing the diagnosis
 1. Carotid ultrasound, MRI brain, MRA head/neck, CTA head/neck, and/or conventional catheter angiogram of the carotid circulation

II. Define the risk factors
 A. Trauma
 B. Elastic tissue disease
 C. Association with migraine

III. List the differential diagnosis
 A. Any cause of stroke
 B. Acute painful Horner syndrome is considered a carotid dissection until proven otherwise
 C. Certain migraine syndromes such as cluster headache

IV. Describe patient management in terms of treatment and follow-up
 A. Describe medical therapy options
 1. consult with appropriate medical specialist regarding anticoagulation
 B. Describe surgical therapy options
 1. possible angioplasty or arterial stenting

V. List the complications of medical treatment, their prevention and management
 A. Anticoagulants and antiplatelets
 1. Bleeding
 B. Angioplasty/Stenting
 1. Procedure related complications
VI. Describe the disease-related complications

A. Cerebral infarction
B. Retinal or optic nerve or arterial ischemia
C. Horner syndrome
D. Development of a pseudoaneurysm
E. Chronic carotid or vertebral artery occlusion
F. Poorer prognosis if intracranial dissection

VII. Describe appropriate patient instructions

A. Avoid cervical manipulations
B. Consult if recurrent pain or neurologic symptoms develop

Additional Resources

1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.
Cerebral venous sinus thrombosis

I. Describe the approach to establishing the diagnosis

A. Describe the etiology of this disease
 1. Occlusion of a venous sinus or cortical vein secondary to
 a. Trauma, surgery
 b. Hypercoagulable states (genetic and acquired)
 c. Mass lesion causing secondary compression of venous outflow
 d. Infection e.g. otitis
 e. Vasculitis e.g. Behçet disease

B. Define the relevant aspects of epidemiology of the disease
 1. Occurs at any age
 2. Often overlooked

C. List the pertinent elements of the history
 1. Headache
 2. Any focal neurologic symptoms and signs
 3. Seizures
 4. Confusion, coma
 5. Symptoms of raised intracranial pressure - headache, pulse-synchronous tinnitus, transient visual obscurations

D. Describe appropriate testing and evaluation for establishing the diagnosis
 1. CTV, MRI, MRV, catheter venogram
 2. Lumbar puncture to measure the cerebrospinal fluid (CSF) opening pressure and analyze the CSF
 3. Extensive etiological work-up if diagnosis not confirmed

II. List the differential diagnosis

A. Any cause of stroke, seizures, coma

B. Any cause of raised intracranial pressure (ICP)
 1. Venous sinus thrombosis should be considered when diagnosing idiopathic intracranial hypertension

III. Describe patient management in terms of treatment and follow-up

A. Describe medical therapy options
 1. Close observation
 2. Anticoagulation
 3. Thrombolysis
 4. Treat seizures
 5. Treat raised ICP
 6. Follow visual function
 a. Treat underlying disorders
B. Describe surgical therapy options
 1. Ventricular drainage
 2. Optic nerve sheath fenestration if visual loss from papilledema

IV. List the complications of treatment, their prevention and management
 A. Fibrinolytics, anticoagulants and antiplatelet agents
 1. Bleeding

V. Describe disease-related complications
 A. Cerebral infarction, cerebral hemorrhage
 B. Death
 C. Pulmonary embolism
 D. Seizures
 E. Raised ICP
 F. Visual loss from papilledema

VI. Describe appropriate patient instructions
 A. Discontinue oral contraceptive
 B. Consult physician if recurrent headache
 C. Precautions during pregnancy and post-partum state
 D. Monitor visual function with formal visual fields

Additional Resources
Dural cavernous fistula and traumatic carotid cavernous fistula

I. Describe the approach to establishing the diagnosis
 A. Describe the etiology of this disease
 1. Direct fistula/high flow (trauma, rupture of carotid cavernous aneurysm (rare), elastic tissue disease)
 2. Indirect fistula/low flow (spontaneous, postmenopausal women)
 B. Define the relevant aspects of epidemiology of the disease
 1. Majority of direct carotid cavernous fistula (CCF) from trauma
 2. Majority of indirect dural cavernous fistula are insidious
 C. List the pertinent elements of the history and clinical examination
 1. Headache, orbital pain
 2. Orbital bruit
 3. Proptosis
 4. Red eye (arterialization of episcleral vessels)
 5. Decreased vision
 6. Diplopia/ophthalmoplegia
 7. Elevated intraocular pressure (IOP) with increased pulse pressure
 8. Retinal hemorrhages, venous engorgement, optic disc edema
 9. Fistula may be contralateral to signs/symptoms
 10. Chemosis
 D. Describe appropriate testing and evaluation for establishing the diagnosis
 1. CT, CTA, MRI, MRA
 2. Orbital ultrasound - enlarged superior ophthalmic vein and/or extraocular muscles (reversal of flow in superior ophthalmic vein)
 3. Conventional angiography is gold standard

II. Define the risk factors
 A. Trauma
 B. Hypertension
 C. Elastic tissue diseases
 D. Cavernous sinus aneurysm

III. List the differential diagnosis
 A. Orbital process
 1. Thyroid eye disease
 2. Myositis (orbital pseudotumor)
 3. Tumor
B. Cavernous sinus thrombosis or cavernous sinus infiltrative process/neoplasm/infection
C. Chronic conjunctivitis

IV. Describe patient management in terms of treatment and follow-up

A. Describe medical therapy options
 1. Treat corneal exposure
 2. Treat elevated IOP
 3. Correct diplopia
 a. Occlusion
 b. Prism
 c. Muscle surgery when stable

B. Describe surgical therapy options
 1. Endovascular treatment of the CCF
 2. Surgical treatment if endovascular treatment fails or cannot be performed

C. Indications for treatment
 1. Cortical venous hypertension
 2. Progressive optic neuropathy
 3. Ophthalmoplegia
 4. Intractable chemosis/exposure keratopathy
 5. Uncontrolled glaucoma
 6. Central retinal vein occlusion
 7. Retinal ischemia

V. List the complications of treatment, their prevention and management

A. Aneurysm, stroke, recurrence, cranial nerve palsy with diplopia

VI. Describe disease-related complications

A. Visual loss (corneal exposure, corneal edema, glaucoma, central retinal vein occlusion, vitreous hemorrhage, proliferative retinopathy, optic neuropathy, exudative retinal detachment, choroidal effusion)
B. Diplopia
C. Intractable pain
D. Intracranial hemorrhage

VII. Describe appropriate patient instructions

A. Refer to an appropriate medical specialist for diagnosis and treatment
B. Ophthalmologic follow-up to manage ocular complications

Additional Resources

1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.
Ocular ischemic syndrome

I. Describe the approach to establishing the diagnosis
 A. Describe the etiology of this disease
 1. Reduced blood flow to the eye (or orbit) resulting in ischemia
 B. Define the relevant aspects of epidemiology of the disease
 1. Any patient with a disorder resulting in poor vascular perfusion to the eye and adnexal structures
 2. Usually seen in the elderly
 C. List the pertinent elements of the history
 1. Slowly progressive unilateral loss of vision
 2. Peri-ocular, peri-orbital or facial pain, from trigeminal ischemia, iritis or elevated IOP
 3. Transient visual loss often after viewing a bright light (light induced amaurosis)
 D. Dilated episcleral vessels rather than ciliary flush
 1. Anterior chamber low grade cell and flare
 2. Iris neovascularization (a late finding)
 3. Corneal edema
 4. Low intraocular pressure due to ciliary body hypoperfusion or later neovascular glaucoma.
 5. Asymmetric cataracts
 6. Hypotensive retinopathy, "venous stasis retinopathy"
 a. Narrowed retinal arteries
 b. Dilated and irregular retinal veins without tortuosity
 c. Mid-peripheral retinal hemorrhages unlike CRVO
 d. NVD, NVE (neovascularization of the disc or elsewhere) in some
 E. Describe appropriate testing and evaluation for establishing the diagnosis
 1. Intravenous fluorescein angiography shows delayed transit time
 2. Doppler duplex ultrasonography of carotid artery system, Magnetic resonance or CT angiography of carotid artery system
 3. Medical evaluation for cerebral and cardiovascular disease, giant cell arteritis and vasculitis and possible invasive angiography

II. Define the risk factors
 A. Ipsilateral internal carotid artery atherosclerosis often associated with
 1. Hypertension
 2. Diabetes mellitus
 3. Tobacco use
 4. Hyperlipidemia
 B. If normal internal carotids consider ophthalmic artery, common carotid or aortic arch disease
 C. Vasculitis and vascular disorders
 1. Giant cell arteritis
 2. Takayasu disease
3. Carotid dissection
4. Radiation therapy
5. other rare disorders

D. External compression of the eye, orbit, neck

III. List the differential diagnosis

A. Nongranulomatous anterior uveitis
B. Central retinal vein occlusion
C. Diabetic retinopathy

IV. Describe patient management in terms of treatment and follow-up

A. Describe the natural history, outcome and prognosis
 1. Most patients end up with poor visual acuity
 2. High risk of cerebrovascular events and ischemic heart disease

B. Describe medical therapy options
 1. Control of intraocular inflammation and pain
 2. Control of raised intraocular pressure
 3. Treatment of underlying vasculitis
 4. Antiplatelet or anticoagulation therapy
 5. Evaluation and management of cardiovascular and cerebrovascular comorbidities

C. Describe surgical therapy options
 1. Glaucoma surgery
 2. Carotid endarterectomy - to treat carotid disease but not necessarily the ocular ischemic syndrome

V. List the complications of treatment, their prevention and management

A. Bleeding from antiplatelet or anticoagulation therapy
B. Cerebrovascular accident or death from carotid endarterectomy
C. Sudden severe intraocular pressure elevation after carotid revascularization

VI. Describe disease-related complications

A. Visual loss
B. Blind, painful eye
C. Cerebrovascular disease
D. Ischemic heart disease

VII. Describe appropriate patient instructions

A. Seek medical attention for increase in ocular redness, ocular pain or decline in vision
B. Modify systemic ischemic risk factors
Additional Resources

Cavernous sinus syndrome

I. **Describe the approach to establishing the diagnosis**

A. **Describe the etiology of this disease**

1. Neoplastic i.e. meningioma, pituitary adenoma/apoplexy, lymphoma, metastasis from systemic malignancy
2. Trans neural tumor spread (from orbit, skin, sinuses)
 a. Periocular skin cancers
 b. Adenoid carcinoma
3. Inflammatory
 a. Idiopathic, non-specific (Tolosa-Hunt syndrome)
 b. Sarcoidosis
 c. Vasculitis (Granulomatosis with polyangiitis-formerly Wegener's)
4. Infectious
 a. Bacterial meningitis
 b. Herpes zoster (vasculitic)
 c. Septic cavernous sinus thrombosis
 d. Fungal (Mucormycosis, Aspergillosis)
5. Vascular
 a. Cavernous carotid aneurysm
 b. Carotid-cavernous fistula

B. **Define the relevant aspects of the epidemiology of the disease**

1. Meningioma is common benign tumor seen in this location, which is most frequently seen in middle aged women
2. Thrombosis
 a. Aseptic (hypercoagulable state, postoperative)
 b. Septic Infection of skull base, leptomeninges or sinuses

C. **List the pertinent elements of the history**

1. Double vision
2. Vision loss
3. Pain
 a. Headache
 b. Retrobulbar
4. Facial numbness
5. Sensory loss in Cranial Nerve (CN) V1 and, sometimes, CN V2
6. Anisocoria
7. Ptosis
8. Subjective bruit (e.g., 'swishing sound')
9. History of periorbital, ocular, or skin biopsy
10. History of malignancy with metastatic potential

D. **Describe pertinent clinical features**
1. "Cavernous sinus syndrome"
 a. Combination of ocular motor palsies from involvement of multiple cranial nerves in close proximity in the cavernous sinus
 i. Oculomotor (CN III)
 ii. Trochlear (CN IV)
 iii. Abducens (CN VI) most commonly involved as it is not in dural wall of the cavernous sinus but rather surrounded by venous blood
 b. Sensory loss (trigeminal CN V)
 i. Ophthalmic division
 ii. Maxillary division
 iii. Mandibular division (extra-cavernous)
 c. Sympathetic denervation (Horner syndrome)
 i. Ptosis
 ii. Miosis
 d. Increased intraocular pressure from orbital venous outflow obstruction

2. Special syndromes
 a. Primary aberrant regeneration of CN III implies slowly expanding lesion compressing the nerve
 i. Thus by definition does not have preceding acute CN III palsy
 ii. Sign of aberrant regeneration
 i) Lid elevation with adduction and depression
 ii) Miosis with elevation, adduction, or depression
 iii) Co-contraction of superior and inferior rectus with persistent limitation of vertical gaze
 iii. Think meningioma, aneurysm
 b. Combination of CN VI palsy and ipsilateral Horner syndrome

3. Diagnosis carotid cavernous fistula
 a. Increased ocular pulse pressure
 b. May have asymmetric elevation of IOP if unilateral
 c. Episcleral vessel prominence
 d. Chemosis
 e. Proptosis
 f. Bruit
 g. Blood in Schlemm canal
 h. Venous congestion
 i. Motility disturbance

E. Describe appropriate testing and evaluation for establishing the diagnosis
 1. Imaging
 a. Magnetic resonance imaging (MRI)
 b. Computerized tomography (CT)
 c. Digital catheter angiography to determine the vascular pattern of the fistula and in planning endovascular treatment options

II. Define the risk factors
A. Previous history of meningioma
B. Closed head injury
C. Known primary malignancy
D. Previous history of periorbital, ocular, skin, or head and neck surgery/biopsy

III. List the differential diagnosis

A. Orbital apex syndrome would show (Cavernous sinus syndrome with CN II involvement)
 1. Optic neuropathy
 2. Proptosis
B. Basilar meningitis affecting multiple cranial nerves
C. Other causes of multiple cranial nerve palsies (brainstem syndrome, zoster, Lyme, sarcoid)

IV. Describe patient management in terms of treatment and follow-up

A. Diplopia
 1. Acute
 a. Occlusion
 b. Prism
 2. Chronic
 a. Establish stability
 b. Prism
 c. Extraocular muscle surgery
B. Neoplasia
 1. Establish a diagnosis
 a. Specific imaging characteristics
 b. Biopsy
 2. Surgical excision
 3. Radiation therapy if appropriate
 4. Chemotherapy if needed
C. Carotid cavernous fistula
 1. Vascular embolization
 2. Observation
 3. Other forms of therapy available based on anatomic abnormality
D. Inflammatory lesions
 1. Corticosteroids
 2. Corticosteroid-sparing agents
 3. Antivirals
 4. Radiation therapy
E. Cavernous sinus thrombosis
 1. Antibiotics
 2. Antifungal agents
V. Complications of treatment
 A. Worsening of diplopia
 B. Optic neuropathy
 C. Ocular ischemic syndrome

VI. Describe disease-related complications
 A. Sequelae of progression of the specific etiology

VII. Describe appropriate patient instructions
 A. Immediately report worsening ocular inflammation
 B. Report decrease in vision
 C. Monitor change in diplopia

Additional Resources
 1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.
Multiple cranial nerve palsies

I. Describe the approach to establishing the diagnosis

A. Describe the etiology of this disease

1. Skull base pathology
 a. Neoplastic
 i. Cavernous sinus
 i) Meningioma
 ii) Schwannoma
 iii) Chordoma/chondrosarcoma
 iv) Pituitary adenoma
 v) Other rare primary tumor
 vi) Metastatic
 (i) Hematologic
 (ii) Neurotrophic
 (a) Squamous cell
 (b) Adenoid cystic carcinoma
 (iii) Direct extension
 ii. Clivus
 i) Meningioma
 ii) Chordoma
 iii) Chondrosarcoma
 iv) Nasopharyngeal carcinoma
 iii. Lymphoproliferative
 i) Lymphoma
 ii) Leukemia
 b. Inflammatory
 i. Idiopathic, Non-specific (Tolosa-Hunt syndrome)
 ii. Sarcoidosis
 iii. Other rare inflammations
 c. Infectious
 i. Meningitis including tubercular, viral and other bacterial
 ii. Herpes zoster
 iii. Lyme disease
 iv. Cavernous sinus thrombosis
 v. Fungal infection
 i) Aspergillus
 ii) Mucor
 d. Vascular
i. Midbrain and thalamic hemorrhage
ii. Carotid cavernous aneurysm
iii. Carotid-cavernous fistula
iv. Venous occlusive disease

2. Traumatic
3. Miller Fisher variant Guillain-Barré
4. Metabolic
 a. Wernicke
 i. Thiamine deficiency
 ii. Mental status change
 iii. Autonomic instability
 iv. Supranuclear eye movement abnormality
 v. Nystagmus

5. Congenital
6. Multicentric infiltrative
 a. Glioma
 b. Metastatic disease
 c. Carcinomatous meningitis
7. Demyelinating disease

B. List the pertinent elements of the history
 1. Diplopia
 2. Pain
 3. Numbness
 4. Signs or symptoms specific to the cranial nerve involved

C. Describe pertinent clinical features
 1. Ocular misalignment
 2. Sensory loss
 3. Ptosis
 4. Anisocoria
 5. Unilateral or bilateral peripheral facial nerve weakness
 6. Signs or symptoms specific to the cranial nerve involved

D. Describe appropriate testing and evaluation for establishing the diagnosis
 1. Imaging
 a. Magnetic resonance imaging
 b. Computed tomography
 c. Angiography
 i. Digital subtraction angiography
 ii. Magnetic resonance angiography
 iii. Computed tomographic angiography
 2. Lumbar puncture
II. Define the risk factors
 A. Immune suppression
 B. Prior trauma
 C. Known intracranial or systemic malignancy

III. List the differential diagnosis
 A. Myasthenia gravis
 1. No pain
 2. No numbness
 3. No pupillary involvement
 4. Restrictive strabismus
 5. Thyroid eye disease (thyroid orbitopathy)
 6. Post trauma
 7. Orbital inflammatory disease
 B. Guillain-Barré syndrome
 C. Botulism
 D. Chronic progressive external ophthalmoplegia
 E. Oculopharyngeal muscular dystrophy

IV. Describe patient management in terms of treatment and follow-up
 A. Diplopia
 1. Acute
 a. Occlusion
 b. Prism
 2. Chronic
 a. Establish stability
 b. Prism
 c. Extraocular muscle surgery
 B. Neoplasia
 1. Establish a diagnosis
 a. Specific imaging characteristics
 b. Biopsy
 2. Surgical excision
 3. Radiation therapy
 a. Fractionated stereotactic radio therapy (FSRT)
 b. Non-Fractionated-Stereotactic radiosurgery (SRS)
 4. Chemotherapy may be indicated
 C. Carotid cavernous fistula
 1. Embolization
 D. Cavernous sinus thrombosis
1. Antibiotics
2. Anticoagulation may be indicated but is controversial

V. List the complications of treatment, their prevention and management

A. Persistent diplopia
B. Optic neuropathy
C. Surgical therapy may be associated with cerebrovascular accident or acquired motor, sensory or cognitive neurologic deficit

VI. Describe disease-related complications

A. Progressive diplopia
B. Neurotrophic keratitis
C. Carotid cavernous fistula
 1. Venous cortical infarction
 2. Optic neuropathy
 a. Glaucoma
 b. Venous stasis retinopathy

VII. Describe appropriate patient instructions

A. Call for worsening diplopia, pain
B. Watch for redness
C. Report change in vision,
D. New neurologic symptoms
 1. Dysarthria, dysphagia, numbness, weakness, incontinence

Additional Resources

1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.
Eyelid retraction

I. Describe the approach to establishing the diagnosis

A. Describe the etiology of this disease

1. Anatomy
 a. Overaction or scarring of levator palpebrae or Mullers muscle or lower eyelid retractors

2. Pathophysiology
 a. Neurogenic
 i. Benign eyelid retraction of infancy
 ii. Dorsal midbrain syndrome of Parinaud (Collier sign)
 i) Associated with retraction-convergence nystagmus (simultaneous contraction of all extraocular muscles, eyes converge and retract in attempted upgaze)
 iii. Oculomotor synkinesis
 i) Perinatal onset; Marcus Gunn jaw wink
 ii) Aberrant regeneration oculomotor nerve (cranial nerve (CN) III)
 b. Myogenic
 i. Congenital
 i) Maldevelopment of the levator palpebrae (lid retraction particularly in downgaze)
 ii. Thyroid eye disease (dysthyroid orbitopathy)
 iii. Postsurgical correction of ptosis
 iv. Contralateral ptosis
 c. Mechanical
 i. Hypoglobus (pseudo retraction)
 i) Orbital floor fracture
 ii. Inferior rectus shortening
 i) Blowout fracture (the upper eyelid may retract in attempted upgaze, and the lower eyelid may be mechanically retracted)
 iii. Eyelid or orbital cicatricial changes
 i) Metastatic breast carcinoma
 ii) Following blepharoplasty or trauma
 iv. Proptosis alone rarely causes eyelid retraction

B. Define the relevant aspects of epidemiology of the disease

1. Most common causes
 a. Thyroid disease (characteristic)
 b. Contralateral ptosis

C. List the pertinent elements of the history

1. Thyroid abnormalities
2. Diplopia
 a. Previous CN III palsy
3. Pineal pathology
4. Previous trauma
5. Sinus disease

D. Describe pertinent clinical features

1. Normal eyelid position
 a. 1-2mm below limbus for upper eyelid
 b. At limbus for lower eyelid
 c. Symmetry
2. Associated motility disturbance
3. Evidence of dorsal midbrain syndrome
 a. Absent up gaze
 b. Retraction convergence nystagmus
 c. Light near dissociation
 d. Papilledema
4. Globe position abnormalities

E. Describe appropriate testing and evaluation for establishing the diagnosis

1. Thyroid function tests, anti-thyroid antibodies
2. Magnetic resonance imaging (MRI)
 a. Attention to the midbrain
 b. Evidence of demyelinating disease
 c. Attention to extraocular muscles

II. Define the risk factors

A. Thyroid disease
B. Midbrain lesion
C. Orbital trauma or previous eyelid or orbital surgery

III. Describe patient management in terms of treatment and follow-up

A. Prevention of exposure keratitis
B. Surgical correction of eyelid position
C. Surgical correction of globe position
D. Botox to levator
E. Tarsorrhaphy

IV. List the complications of treatment, their prevention and management

A. Induced ptosis
B. Worsen inferior eyelid retraction with inferior rectus surgery

V. Describe disease-related complications

A. Exposure keratopathy
B. Decreased vision
VI. Describe appropriate patient instructions

A. Adequate lubrication
 1. Especially at bedtime

B. Taping if necessary

Additional Resources

1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.
Ptosis

I. Describe the approach to establishing the diagnosis

A. Describe the etiology of this disease

1. Congenital
 a. Myopathic (absent or fibrotic levator from abnormal development)
 b. Rarely neurogenic i.e. abnormal innervation
 i. Congenital 3rd palsy, congenital Horner
 c. Family history in small percentage

2. Syndromic
 a. With elevator palsy
 b. Marcus Gunn Jaw Wink
 i. Synkinesis between motor cranial nerve (CN) V and the levator CN III
 ii. Elevation of the eyelid with chewing or horizontal movement of the jaw
 iii. Associated
 i) Ptosis
 ii) Ocular motility disorder
 c. Blepharophimosis

3. Anatomic
 a. Levator dehiscence, disinsertion, stretching
 b. Mechanical
 i. Contact lens associated
 i) Giant papillary conjunctivitis
 ii. Eyelid and orbit tumors as in Neurofibromatosis Hemangioma, Dermoid
 iii. Eyelid edema from inflammation
 c. Trauma

4. Myopathic
 a. Mitochondrial: chronic progressive external ophthalmoplegia (CPEO)
 b. Myotonic dystrophy
 c. Oculopharyngeal dystrophy
 d. Corticosteroid drops
 e. Contact lens wear

5. Neuropathic
 a. Peripheral CN III dysfunction
 b. Nuclear III disease
 i. Bilateral ptosis typical of nuclear
 c. Horner syndrome
 i. Mild
 ii. Ipsilateral miosis
Variable ipsilateral anhidrosis

Lower eyelid elevated

7. Neuro-muscular transmission disorder
 a. Myasthenia gravis
 b. Botulism

B. Define the relevant aspects of epidemiology of the disease
 1. Common causes
 a. Levator dehiscence in acquired adult ptosis
 b. Congenital in childhood ptosis
 c. CN III palsy
 d. Myasthenia gravis
 e. Homer syndrome

C. List the pertinent elements of the history
 1. Noted eyelid droop ("smaller eye")
 2. Asymmetry in eyelid position
 3. "Heaviness" of eyelids, lids close with reading, headache and eye strain to keep eyes open
 4. Variability in eye appearance
 5. Change in vision, near or distance
 6. Diplopia

D. Describe pertinent clinical features
 1. Normal eyelid function
 a. Palpebral fissure height
 b. Eyelid excursion as a measure of levator palpebrae superioris function (upper eyelid range with frontalis splinted)
 c. Marginal reflex distance: upper eyelid margin to mid corneal light reflex
 d. Eyelid crease measurements
 2. Duration
 a. Acquired versus congenital
 b. Change over time
 i. Diurnal change
 ii. Long-term progression
 iii. Chronicity from past photo
 3. Associated physical eyelid signs
 a. Retraction of lid in downgaze i.e. congenital ptosis or aberrant 3rd nerve regeneration
 b. Absent or elevated eyelid crease i.e. levator dehiscence
 c. Limited upper eyelid excursion i.e. congenital ptosis causing a widening of the interpalpebral fissure in downgaze
 4. Synkinetic movements i.e. aberrant 3rd N regeneration with lid opening with adduction or downgaze
 5. Symmetry of lids, eye movements, pupils
 6. Associated generalized motor findings- orbicularis or facial weakness

E. Describe appropriate testing and evaluation for establishing the diagnosis
1. Work up for myasthenia gravis
2. Genetic analysis
3. Imaging studies if indicated
4. Mitochondrial assessment for CPEO if clinically indicated

II. Define the risk factors
 A. Family history
 B. Systemic disease
 1. Myasthenia gravis
 2. Muscular dystrophy

III. List the differential diagnosis
 A. Pseudoptosis
 1. Dermatochalasis
 2. Brow ptosis
 3. Globe size abnormalities
 4. Hypertropia
 5. Eyelid retraction contralateral eye
 6. Enophthalmos
 B. Apraxia of eyelid opening, blepharospasm
 C. Eyelid closure
 1. Aberrant regeneration of CN VII
 2. Psychogenic eyelid closure

IV. Describe patient management in terms of treatment and follow-up
 A. Check for dry eye
 B. Recognize orbicularis weakness
 C. Assess ocular motility
 D. Identify systemic disease
 E. Check corneal sensation
 F. Measurement of upper eyelid excursion
 G. Surgery
 1. Levator resection/advancement
 2. Mueller muscle surgery
 3. Frontalis suspension

V. List the complications of treatment, their prevention and management
 A. Lagophthalmos
 B. Exposure keratopathy or exacerbation of dry eye
 C. Asymmetric eyelid position
VI. Describe disease-related complications

A. Amblyopia in infants
B. Associated diplopia
C. Impairment of visual field
D. Decreased central acuity

VII. Describe appropriate patient instructions

A. Report variability or progression
B. Report diplopia
C. Post-surgery
 1. Adequate lubrication

Additional Resources

1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.
Miller Fisher variant of Guillain-Barré syndrome

I. Describe the approach to establishing the diagnosis

A. Describe the etiology of this disease
 1. Acute inflammatory demyelination of peripheral nerves
 2. Preceding infection (gastrointestinal or respiratory)
 a. Campylobacter jejuni
 b. Other

B. Define the relevant aspects of the epidemiology of the disease
 1. Slightly increased frequency with age

C. List the pertinent elements of the history
 1. Acute weakness
 2. Often following viral or bacterial infection, vaccination, or gastrointestinal disturbance

D. Describe pertinent clinical features
 1. Neuro-ophthalmic (C. Miller Fisher variant)
 a. Diplopia
 i. Single or multiple cranial nerve (CN) palsies
 b. Ptosis
 c. Mydriasis
 2. Neurologic
 a. Areflexia
 b. Ataxia
 c. Motor weakness
 i. Bulbar muscles
 i) Facial nerve palsy
 ii) Dysphagia
 ii. Ophthalmoplegia

E. Describe appropriate testing and evaluation for establishing the diagnosis
 1. Auto-antibodies (e.g., Anti-GQ1b IgG antibody in serum and CSF)
 2. Magnetic resonance imaging (MRI)
 3. LP may be indicated (increased CSF protein with normal cell count)

II. Define the risk factors

A. Preceding viral or bacterial infection
B. Preceding immunization

III. List the differential diagnosis
A. **Isolated CN palsies**
 1. Microvascular
 2. Other inflammatory conditions
 a. Meningitis
 b. Demyelinating
 3. Aneurysm

B. **Multiple cranial nerve palsies**
 1. Other inflammatory
 a. Meningitis
 2. Brainstem disease
 3. Neoplastic
 4. Botulism
 5. Wernicke encephalopathy

C. **Myasthenia gravis when pupils normal**

D. **Thyroid eye disease (thyroid orbitopathy)**

E. **Carcinomatous meningitis**

IV. Describe patient management in terms of treatment and follow-up

A. **Acute**
 1. Plasmapheresis
 2. Intravenous immunoglobulin (IVIg)
 3. Corticosteroids - role is controversial
 4. Symptomatic
 a. Monocular occlusion to avoid diplopia
 b. Prism
 5. Lubrication and protection of eyes if paralytic lagophthalmos is present

B. **Chronic**
 1. Rehabilitation: For ataxia and gait training
 2. Extraocular muscle surgery or prism when stable

V. List the complications of medical treatment, their prevention and management

A. **Fluid load intolerance to IVIg and plasmapheresis treatments**

B. **Complications of corticosteroid treatment**

VI. List the complications of the disease

A. **Prognosis**
 1. Majority improve
 2. Residual disabling diplopia, ataxia, facial weakness

VII. Describe appropriate patient instructions
A. Monocular patching to control diplopia
B. Assistive devices (cane, walker)
C. Safety devices

Additional Resources

1. AAO, Basic and Clinical Science Course. Section 5: Neuro-ophthalmology, 2015-2016.
Systemic corticosteroids in neuro-ophthalmology

I. Describe effects of corticosteroids
 A. Glucocorticoid effect
 1. Anti-inflammatory properties
 B. Mineralocorticoid effect
 1. Bone and kidney

II. List neuro-ophthalmic indications for corticosteroids
 A. Giant cell arteritis
 B. Neuro-ophthalmic manifestations of other autoimmune diseases and vasculitides
 C. Selected cases of optic neuritis and other inflammatory/vasculitic optic neuropathies (e.g., demyelinating disease, sarcoid)
 D. Idiopathic orbital inflammatory disease
 E. Compressive optic neuropathies
 F. Thyroid orbitopathy
 G. Isolated traumatic optic neuropathy (controversial)
 H. Neoplastic disease
 1. Lymphoma
 2. Other rapidly expanding mass lesions
 I. Ophthalmoplegias
 1. Myasthenia (selected cases)

III. List the contraindications
 A. Invasive fungal infections
 B. Untreated tuberculosis
 C. Active peptic ulcer disease

IV. List the alternatives to this procedure/therapy for systemic use
 A. Immunomodulatory agents
 B. Radiation therapy may be indicated in certain diseases

V. Describe the instrumentation and technique
 A. Oral forms, IV forms, depo forms for injection
 B. Agents in common oral use
 1. Prednisone
 2. Dexamethasone (Decadron)
C. **Agents for IV use**
 1. Methylprednisolone (Solu-Medrol)
 2. Dexamethasone (Decadron)

VI. **Describe the complications of the therapy**

A. **Systemic side effects**
 1. Short term
 a. Hypertension
 b. Hyperglycemia
 c. Ulcerative perforation (in the setting of peptic ulcer disease especially if combined with nonsteroidal anti-inflammatory agents (NSAIDs))
 d. Electrolyte disturbances
 e. Fluid retention, congestive heart failure in susceptible patients
 f. Increased susceptibility to infection
 g. Sleep disturbance
 h. Psychosis (increased incidence in elderly), emotional lability
 i. Potentiation of fungal infection
 j. Aseptic necrosis (rare)
 2. Long term
 a. Weight gain
 b. Diabetes mellitus (may be a short term side effect as well)
 c. Poor wound healing
 d. Osteoporosis and compression fractures
 e. Adrenal suppression: Cushing syndrome
 f. Skin changes
 g. Corticosteroid myopathy
 h. Fat redistribution
 i. Suppression of growth of children
 j. Aseptic necrosis (rare)

B. **Ocular/orbital effects**
 1. Increased intraocular pressure (IOP) (less common with systemic corticosteroids)
 2. Cataract formation (posterior subcapsular)

VII. **List general comments on usage**

A. **Acute therapy** (3 days or less usually needs no specific attention)
B. **Alternate day therapy** has much fewer side effects but not effective in certain conditions including giant cell arteritis
C. **Chronic therapy**
 1. If treatment chronic, taper is necessary
 2. When treating certain conditions (idiopathic orbital inflammatory disease), slow taper is essential to avoid recurrence
VIII. Describe the follow-up care

A. Essential to involve the patient’s internist or primary care physician actively to monitor for the development of and manage corticosteroid induced side-effects including osteoporosis, hyperglycemia, hypertension and electrolyte disturbances

B. Monitor IOP and cataract status

C. Appropriate use of stress dose replacement in setting of long term corticosteroid use

IX. Describe appropriate patient instructions

A. Inform the physician of any new symptoms while on the medication

Additional Resources

1. AAO, Basic and Clinical Science Course. Section 1: Update on General Medicine, 2015-2016.

4. AAO, Focal Points: Giant Cell Arteritis, Module #6, 2005.
I. Describe the approach to establishing the diagnosis

A. Describe the etiology of this disease
 1. Visual complaints that have no physiologic or organic basis are due to:
 a. Malingering, or willful exaggeration of symptoms, often when litigation involving monetary compensation, disability, or psychosocial stressors are involved
 b. Hysteria, or a subconscious expression of nonorganic signs or symptoms (conversion reaction)
 i. True hysteria/conversion disorder is extremely rare

B. List the pertinent elements of the history
 1. Monocular diplopia
 2. Unilateral or bilateral decreased vision
 3. Unilateral or bilateral visual field loss
 4. Onset in relationship to antecedent trauma
 5. Pertinent medical history
 a. Psychosocial stress
 i. School
 ii. Family/peer relationships
 b. Secondary gain from litigation
 i. Car accident
 ii. Slip and fall
 iii. Other personal injury

C. Describe pertinent clinical features
 1. Monocular diplopia (may be bilateral)
 2. Unilateral or bilateral decreased vision
 3. Unilateral or bilateral visual field loss
 a. Classic patterns of NPVL
 i. Spiral fields on kinetic perimetry
 ii. Overlapping isopters on kinetic perimetry
 iii. Severe constriction ("tunnel fields") on kinetic or automated static perimetry and on confrontation field testing (may be non-expanding on confrontation as well)
 iv. Cloverleaf pattern on automated static perimetry
 v. Monocular hemianopia
 vi. Generalized depression, often severe, on automated static perimetry
 4. Pupil findings
 a. Normal reactivity in the absence of associated ocular trauma with traumatic mydriasis or other iris pathology
 b. Absence of an afferent pupillary defect (APD) in spite of gross asymmetry of visual fields
 5. May have component of NPVL superimposed upon organic visual loss related to trauma

D. Describe appropriate testing and evaluation for establishing the diagnosis
 1. Complete ophthalmologic examination including visual fields
2. High index of suspicion

3. Evaluation of monocular diplopia
 a. Sensorimotor exam to confirm normal ocular alignment in all fields of gaze and verify monocular nature of diplopia
 b. Rule out contributory corneal, refractive, lenticular, and retinal pathology
 c. If monocular diplopia resolves with a pinhole, it may be due to uncorrected refractive error, lens or corneal opacity, or corneal warpage

4. Evaluation of monocular decreased visual acuity
 a. Vertical prism dissociation test
 b. Stereo vectograph testing
 c. Monocular fogging at phoropter
 d. Bottom up acuity (i.e. begin testing with 20/10 or 20/15 line)
 e. Visual evoked potential generally not helpful as can be voluntarily suppressed

5. Evaluation of non-physiologic visual field loss
 a. Observe patient performing tasks outside of stated visual field (e.g. ambulate throughout office without difficulty, shake hand beyond stated visual field, locate objects outside of stated visual field such as trashcan to throw away tissues)
 b. Have patient look at your fingers in eccentric quadrants of field when "testing motility" after they've previously denied ability to count fingers in this region on confrontation field
 c. Absence of an APD in face of grossly asymmetric visual fields
 d. Normal "pink" optic nerve in setting of longstanding monocular visual loss

II. Define the risk factors

 A. Personal injury/worker's compensation litigation
 B. Impending disability determination
 C. Psychosocial stress, anxiety, or depression

III. List the most common or critical entities in the differential diagnosis

 A. Organic visual loss or superimposed organic component with non-physiologic embellishment

Additional Resources

PRACTICING OPHTHALMOLOGIST CURRICULUM, 2017-2019

NEURO-OPHTHALMOLOGY/ORBIT

COPYRIGHT © 2017
AMERICAN ACADEMY OF OPHTHALMOLOGY
ALL RIGHTS RESERVED